• Title/Summary/Keyword: acoustic variations

Search Result 154, Processing Time 0.019 seconds

SEASONAL AND SUBINERTIAL VARIATIONS IN THE SOYA WARM CURRENT REVEALED BY HF OCEAN RADARS, COASTAL TIDE GAUGES, AND A BOTTOM-MOUNTED ADCP

  • Ebuchi, Naoto;Fukamachi, Yasushi;Ohshima, Kay I.;Wakatsuchi, Masaaki
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.340-343
    • /
    • 2008
  • The Soya Warm Current (SWC) is a coastal boundary current, which flows along the coast of Hokkaido in the Sea of Okhotsk. Seasonal and subinertial variations in the SWC are investigated using data obtained by high-frequency (HF) ocean radars, coastal tide gauges, and a bottom-mounted acoustic Doppler current profiler (ADCP). The HF radars clearly capture the seasonal variations in the surface current fields of the SWC. The velocity of the SWC reaches its maximum, approximately 1 m/s, in the summer, and becomes weaker in the winter. The velocity core is located 20 to 30 km from the coast, and its width is approximately 50 km. The almost same seasonal cycle was repeated in the period from August 2003 to March 2007. In addition to the annual variation, the SWC exhibits subinertial variations with a period from 10-15 days. The surface transport by the SWC shows a significant correlation with the sea level difference between the Sea of Japan and Sea of Okhotsk for both of the seasonal and subinertial variations, indicating that the SWC is driven by the sea level difference between the two seas. Generation mechanism of the subinertial variation is discussed using wind data from the European Centre for Medium-range Weather Forecasts (ECMWF) analyses. The subinertial variations in the SWC are significantly correlated with the meridional wind component over the region. The subinertial variations in the sea level difference and surface current delay from the meridional wind variations for one or two days. Continental shelf waves triggered by the meridional wind on the east coast of Sakhalin and west coast of Hokkaido are considered to be a possible generation mechanism for the subinertial variations in the SWC.

  • PDF

Analysis of Acoustic Emission Signal Sensitivity to Variations in Thin-film Material Properties During CMP Process (CMP 공정중 박막 종류에 따른 AE 신호 분석)

  • Park, Sun Joon;Lee, Hyun Seop;Jeong, Hae Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.863-867
    • /
    • 2014
  • In this study, an acoustic emission (AE) sensor was used for measuring the abrasive and molecular-scale phenomena in chemical mechanical polishing (CMP). An AE sensor is a transducer that converts a mechanical wave into an electrical signal, and is capable of acquiring high-level frequencies from materials. Therefore, an AE sensor was installed in the CMP equipment and the signals were measured simultaneously during the polishing process. In this study, an AE monitoring system was developed for investigating the sensitivity of the AE signal to (a) the variations in the material properties of the pad, slurry, and wafer and (b) the change in conditions during the CMP process. This system was adapted to Oxide and Cu CMP processes. AE signal parameters including AE raw frequency, FFT, and amplitude were analyzed for understanding the abrasive and molecular-level phenomena in the CMP process. Finally, we verified that AE sensors with different bandwidths could function in complementary ways during CMP process monitoring.

Acoustic parameter delta of an aspirated voice in stroke patients (뇌졸중 환자 대상 흡인 음성의 음향변수 변동)

  • Kang, Young Ae;Jee, Sung Ju;Koo, Bon Seok;Jo, Cheolwoo
    • Phonetics and Speech Sciences
    • /
    • v.9 no.3
    • /
    • pp.85-91
    • /
    • 2017
  • The present study aimed to investigate the changes of acoustic parameters of the aspirated voice in stroke patients. The eighty-eight subjects diagnosed with cerebro-vascular accident were divided into 32 penetration/aspiration (P/A) and 56 Non-P/A groups according to the videofluroscopic swallowing study (VFSS) results, and 26 control subjects participated. All subjects preformed VFSS and vowel /a/ was recorded three times pre- and post VFSS. Since the variation in the acoustic parameters within a single phonation has been observed, we proposed a delta formula for the acoustic parameters which can reflect the temporal changes of the each parameter in an utterance. We measured from the voice data eight acoustic parameters: fundamental frequency (F0), standard deviation of F0 (F0_SD), Jitter, relative average perturbation (RAP), Shimmer, amplitude perturbation quotient (APQ), harmonic to noise ration (HNR), noise to harmonic ratio (NHR). Then we found parameters which show the meaningful biggest temporal change in an utterance using the suggested delta parameter. Among them, the deltas of shimmer and APQ were significantly different pre- and post VFSS. These deltas of the P/A and the control group were increased after VFSS, while those of the Non-P/A group was descended. The variation patterns of the P/A and the control group were similar but the change width of the P/A group was larger. The large variations in an aspirated phonation of the P/A group are thought to be caused by irregular changes in air resistance due to residual food on the vocal cords.

Development of viscosity sensor using surface acoustic wave (탄성 표면파를 이용한 점도 센서의 개발)

  • Chong, Woo-Suk;Kim, Gi-Beum;Kang, Hyung-Sub;Hong, Chul-Un
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.289-294
    • /
    • 2008
  • The purpose of this study is to materialize the viscosity sensor by using the SH-SAW sensor of which the center frequency is operated at higher than 50 MHz. In order to measure the viscosity, SAW sensor of which the center frequency is operated at 100 MHz is developed. By using the developed sensor, phase shift, delay time, insertion loss, and frequency variation are measured at different viscosity. The result shows that the phase shift difference between the viscosity variations is such that the difference between the distilled water and the 100 % glycerol solution is approximately $45^{\circ}$, the change of the insertion loss is approximately 9 dB, and the difference of frequency variation is approximately 5.9 MHz. Therefore, it is shown that viscosity of unknown solution can be measured with the surface acoustic wave sensor.

Pitch and Formant Trajectories of English Vowels by American Males with Different Speaking Styles (발화방식에 따른 미국인 남성 영어모음의 피치와 포먼트 궤적)

  • Yang, Byung-Gon
    • Phonetics and Speech Sciences
    • /
    • v.4 no.1
    • /
    • pp.21-28
    • /
    • 2012
  • Many previous studies reported acoustic parameters of English vowels produced by a clear speaking style. In everyday usage, we actually produce speech sounds with various speaking styles. Different styles may yield different acoustic measurements. This study attempts to examine pitch and formant trajectories of eleven English vowels produced by nine American males in order to understand acoustic variations depending on clear and conversational speaking styles. The author used Praat to obtain trajectories systematically at seven equidistant time points over the vowel segment while checking measurement validity. Results showed that pitch trajectories indicated distinct patterns depending on four speaking styles. Generally, higher pitch values were observed in the higher vowels and the pitch was higher in the clear speaking styles than that in the conversational styles. The same trend was observed in the three formant trajectories of front vowels and the first formant trajectories of back vowels. The second and third trajectories of back vowels revealed an opposite or inconsistent trend, which might be attributable to the coarticulation of the following consonant or lip rounding gestures. The author made a tentative conclusion that people tend to produce vowels to enhance pitch and formant differences to transmit their information clearly. Further perceptual studies on synthesized vowels with varying pitch and formant values are desirable to address the conclusion.

Optimal Selection of Transducer Locations for Active Cancelation of Noise in a Duct (덕트내에서의 능동 소음 제거를 위한 Transducer의 최적 위치 선정)

  • 남현도;강택동
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.1
    • /
    • pp.102-110
    • /
    • 1999
  • The attenuation property of active noise control system is much dependent on the locations of transducers. It is very difficult to retermine the orfunal locations of transducers analytically, because the acoustic behaviors in active noise control systems are very complex and the acoustic parameters, fluid density, corqJlex propagation, coefficients, etc., are usually unknown. In this paper, effects of positions of transducers and of distances between transducers on attenuation properties of active noise control systems is investigated via computer simulations. Tbe transfer functions between the transducers are derived using the superposition principle for computer simulations. Computer simulations show that the acoustic monopole and dipole systems for duct noise attenuation are sensitive to variations of the transducer location.

  • PDF

Predicting Damage in a Concrete Structure Using Acoustic Emission and Electrical Resistivity for a Low and Intermediate Level Nuclear Waste Repository

  • Hong, Chang-Ho;Kim, Jin-Seop;Lee, Hang-Lo;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.197-204
    • /
    • 2021
  • In this study, the well-known non-destructive acoustic emission (AE) and electrical resistivity methods were employed to predict quantitative damage in the silo structure of the Wolsong Low and Intermediate Level Radioactive Waste Disposal Center (WLDC), Gyeongju, South Korea. Brazilian tensile test was conducted with a fully saturated specimen with a composition identical to that of the WLDC silo concrete. Bi-axial strain gauges, AE sensors, and electrodes were attached to the surface of the specimen to monitor changes. Both the AE hit and electrical resistance values helped in the anticipation of imminent specimen failure, which was further confirmed using a strain gauge. The quantitative damage (or damage variable) was defined according to the AE hits and electrical resistance and analyzed with stress ratio variations. Approximately 75% of the damage occurred when the stress ratio exceeded 0.5. Quantitative damage from AE hits and electrical resistance showed a good correlation (R = 0.988, RMSE = 0.044). This implies that AE and electrical resistivity can be complementarily used for damage assessment of the structure. In future, damage to dry and heated specimens will be examined using AE hits and electrical resistance, and the results will be compared with those from this study.

Performance of Carrier Frequency Offset Compensation using CAZAC Code in Time and Spatial Variant Underwater Acoustic Channel (시·공간 변동 수중음향 채널에서 CAZAC 코드를 적용한 반송파 주파수 옵셋 보상 기법의 성능평가)

  • Park, Jihyun;Bae, Minja;Kim, Jongju;Yoon, Jong Rak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1229-1236
    • /
    • 2016
  • In underwater acoustic multipath channel, a performance of underwater acoustic (UWA) communication systems is affected by dynamic variation of boundary and high temporal and spatial variability of the channel conditions. Time and spatial variations of UWA channel induce a carrier frequency offset (CFO) since a phase and a frequency of received signal mismatch with a transmitting signal. Therefore, a performance of a phase shift keying underwater acoustic communication system is degraded. In this study, we have analyzed a performance of CFO estimation and compensation using a phase code in time and spatial variation channel. A constant amplitude zero autocorrelation (CAZAC) signal is applied as a phase code signal and its performance is evaluated in water tank. The bit error rate of a quadrature phase shift keying (QPSK) system with a phase code is improved about 4 to 10 times better than that without a phase code.

A Study on $\phi$-AE Distribution Patterns Characteristics due to Treeing Deterioration (트리잉 열화에 따른 $\phi$-AE 분포특성에 관한 연구)

  • 박재준;강태오;김재환
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.9
    • /
    • pp.1060-1070
    • /
    • 1992
  • In this paper, characteristics of Acoustic Emission in Low Density Polyethylene were studied from tree initiation to breakdown under long-term inhomogeneous alternative electrical field. The voltage levels used were 9, 11 and 14[kV]. Especially, a newly developed automatic measuring system was used to measure time variations of AE average amplitude, AE pulse number, AE pulse distribution patterns due to polarities. The patterns wer specially the variated patterns, when tree propagated. Also, parameters for dielectric breakdown prediction, which were suggested by Okamoto, were calculated. The result was analysed by tree shapes and partial discharge activities in tree due to tree initiation and propagation.

  • PDF

Experimental Analysis of Flow Fields inside Intake Heads of a Vacuum Cleaner

  • Daichin;Lee, Sang-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.894-904
    • /
    • 2005
  • The flow structure inside the intake head greatly affects the working efficiency of a vacuum cleaner such as suction power and aero-acoustic noise. In this study, the flow inside intake heads of a vacuum cleaner was investigated using qualitative flow visualization and quantitative PIV (Particle Image Velocimetry) techniques. The aerodynamic power, suction efficiency and noise level of the intake heads were also measured. In order to improve the performance of the vacuum cleaner, inner structure of the flow paths of the intake head, such as trench height and shape of connection chamber were modified. The flow structures of modified intake heads were compared with that of the original intake head. The aero-acoustic noise caused by flow separation was reduced and the suction efficiency was also changed due to flow path modification of intake head. In this paper, the variations of flow fields for different intake heads are presented and discussed together with results of aerodynamic power, suction efficiency and noise level.