• Title/Summary/Keyword: acoustic search

Search Result 68, Processing Time 0.035 seconds

The Vocabulary Recognition Optimize using Acoustic and Lexical Search (음향학적 및 언어적 탐색을 이용한 어휘 인식 최적화)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.4
    • /
    • pp.496-503
    • /
    • 2010
  • Speech recognition system is developed of standalone, In case of a mobile terminal using that low recognition rate represent because of limitation of memory size and audio compression. This study suggest vocabulary recognition highest performance improvement system for separate acoustic search and lexical search. Acoustic search is carry out in mobile terminal, lexical search is carry out in server processing system. feature vector of speech signal extract using GMM a phoneme execution, recognition a phoneme list transmission server using Lexical Tree Search algorithm lexical search recognition execution. System performance as a result of represent vocabulary dependence recognition rate of 98.01%, vocabulary independence recognition rate of 97.71%, represent recognition speed of 1.58 second.

Vocabulary Recognition Retrieval Optimized System using MLHF Model (MLHF 모델을 적용한 어휘 인식 탐색 최적화 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.217-223
    • /
    • 2009
  • Vocabulary recognition system of Mobile terminal is executed statistical method for vocabulary recognition and used statistical grammar recognition system using N-gram. If limit arithmetic processing capacity in memory of vocabulary to grow then vocabulary recognition algorithm complicated and need a large scale search space and many processing time on account of impossible to process. This study suggest vocabulary recognition optimize using MLHF System. MLHF separate acoustic search and lexical search system using FLaVoR. Acoustic search feature vector of speech signal extract using HMM, lexical search recognition execution using Levenshtein distance algorithm. System performance as a result of represent vocabulary dependence recognition rate of 98.63%, vocabulary independence recognition rate of 97.91%, represent recognition speed of 1.61 second.

Optimal Acoustic Search Path Planning Based on Genetic Algorithm in Discrete Path System (이산 경로 시스템에서 유전알고리듬을 이용한 최적음향탐색경로 전략)

  • CHO JUNG-HONG;KIM JUNG-HAE;KIM JEA-SOO;LIM JUN-SEOK;KIM SEONG-IL;KIM YOUNG-SUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.69-76
    • /
    • 2006
  • The design of efficient search path to maximize the Cumulative Detection Probability(CDP) is mainly dependent on experience and intuition when searcher detect the target using SONAR in the ocean. Recently with the advance of modeling and simulation method, it has been possible to access the optimization problems more systematically. In this paper, a method for the optimal search path calculation is developed based on the combination of the genetic algorithm and the calculation algorithm for detection range. We consider the discrete system for search path, space, and time, and use the movement direction of the SONAR for the gene of the genetic algorithm. The developed algorithm, OASPP(Optimal Acoustic Search Path Planning), is shown to be effective, via a simulation, finding the optimal search path for the case when the intuitive solution exists. Also, OASPP is compared with other algorithms for the measure of efficiency to maximize CDP.

A Study on Acoustic Radiation Reduction of a Vibrating Panel by Using Particle Swarm Optimization Algorithm (군집행동 알고리즘을 이용한 판넬구조물의 방사소음저감에 관한 연구)

  • Jeon, Jin-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.482-490
    • /
    • 2009
  • In this paper, the author proposes a new method for acoustic radiation optimum design to minimize noise from a vibrating panel-like structure using a collaborative population-based search method called the particle swarm optimization algorithm(PSOA). The PSOA is a parallel evolutionary computation technique initially developed by Kennedy and Eberhart. The acoustic radiation optimization method based on the PSOA consists of two processes. In the first process, the acoustic radiation analysis by an integrated p-version FEM/BEM, which was developed by using MATLAB, is performed to evaluate the exterior acoustic radiation field of the panel. The second process is to search the optimum design variables: 1) Shape of Bezier curves and 2) Shape and position of ribs, to minimize noise from the panel using the PSOA. The optimization method based on the PSOA is compared to that based on the steady state genetic algorithm(SSGA) in order to verify the effectiveness and validity of the optimal solution by PSOA. Finally, it is shown that the optimal designs of the panel obtained by using the PSOA can achieve effective reductions in radiated sound power.

Remote Localization of an Underground Acoustic Source by a Passive Sonar System

  • Jarng, Soon-Suck
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.138-148
    • /
    • 1998
  • The aim of the work described in this paper is to develop a complex underground acoustic system which detects and localizes the origin of an underground hammering sound using an array of hydrophones located about loom underground. Three different methods for the sound localization will be presented, a time-delay method, a power-attenuation method and a hybrid method. In the time-delay method, the cross correlation of the signals received from the way of sensors is used to calculate the time delays between those signals. In the power-attenuation method, the powers of the received signals provide a measure of the distances of the source from the sensors. A new hybrid method has been developed for estimating the origin of the underground acoustic source by coupling both methods. The Nelder-Meade simplex search algorithm is then used to numerically estimate the position of the source in those methods. For each method the sound localization is carried out in three dimensions underground. The distance between the true and estimated origins of the source is in some cases less than 6m for a search area of radius 250m.

  • PDF

Effect of Source Line Location on Lift-off Acoustic Loads of a Launch Vehicle (음원 분포선 위치가 발사체 이륙 음향하중에 미치는 영향)

  • Choi, Sang-Hyeon;Ih, Jeong-Guon;Lee, Ik-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.8
    • /
    • pp.539-545
    • /
    • 2015
  • Intense acoustic load is generated when a launch vehicle lifts off, causing the damaging vibrations at the launch vehicle or satellite within the fairing. This paper is concerned with the prediction of lift-off acoustic loads for a launch vehicle. As a test example, the lift-off acoustic load on the Korean launch vehicle, NARO, is predicted by the existing calculation tool, the modified Eldred's second method. Although the acoustic sources, assumed as point sources, are to be located along the center line of the exhaust plume when using the Eldred's prediction method, the exact location of the deflected center line of exhaust gas flow is not usually known. To search for the most appropriate source positions, six models of source line distribution are suggested and the acoustic load prediction results from these models are compared with the actual measurements. It is found that the predicted sound pressure spectrum of the Naro is the most similar to the measured data when the centerline of the turbulent kinetic energy contour is used as the source line.

Measure of Effectiveness Analysis of Passive SONAR System for Detection (수동소나시스템에서 탐지효과도 분석)

  • Cho, Jung-Hong;Kim, Jea-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.272-287
    • /
    • 2012
  • The optimal use of sonar systems for detection is a practical problem in a given ocean environment. In order to quantify the mission achievability in general, measure of effectiveness(MOE) is defined for specific missions. In this paper, using the specific MOE for detection, which is represented as cumulative detection probability(CDP), an integrated software package named as Optimal Acoustic Search Path Planning(OASPP) is developed. For a given ocean environment and sonar systems, the discrete observations for detection probability(PD) are used to calculate CDP incorporating sonar and environmental parameters. Also, counter-detection probability is considered for vulnerability analysis for a given scenario. Through modeling and simulation for a simple case for which an intuitive solution is known, the developed code is verified.

Multi-stage Speech Recognition Using Confidence Vector (신뢰도 벡터 기반의 다단계 음성인식)

  • Jeon, Hyung-Bae;Hwang, Kyu-Woong;Chung, Hoon;Kim, Seung-Hi;Park, Jun;Lee, Yun-Keun
    • MALSORI
    • /
    • no.63
    • /
    • pp.113-124
    • /
    • 2007
  • In this paper, we propose a use of confidence vector as an intermediate input feature for multi-stage based speech recognition architecture to improve recognition accuracy. A multi-stage speech recognition structure is introduced as a method to reduce the computational complexity of the decoding procedure and then accomplish faster speech recognition. Conventional multi-stage speech recognition is usually composed of three stages, acoustic search, lexical search, and acoustic re-scoring. In this paper, we focus on improving the accuracy of the lexical decoding by introducing a confidence vector as an input feature instead of phoneme which was used typically. We take experimental results on 220K Korean Point-of-Interest (POI) domain and the experimental results show that the proposed method contributes on improving accuracy.

  • PDF

Fault Diagnosis of a Pump Using Acoustic and Vibration Signals (소음진동 신호를 이용한 펌프의 고장진단)

  • 박순재;정원식;이신영;정태진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.883-887
    • /
    • 2002
  • We should maintain the maximum operation capacity for production facilities and find properly out the fault of each equipment rapidly in order to decrease a loss caused by its failure. The acoustic and vibration signals of a machine always carry the dynamic information of the machine. These signals are very useful fur the feature extraction and fault diagnosis. We performed a fundamental study which develops a system of fault diagnosis for a pump. We experimented vibrations by acceleration sensors and noises by microphones, compared and analysed for normal products, artificially deformed products. We tried to search a change of the dynamic signals according to machine malfunctions and analyse the type of deformation or failure. The results showed that acoustic signals as well as vibration signals can be used as a simple method lot a detection of machine malfunction or fault diagnosis.

  • PDF

A Review on Recent Study of Acoustic Analysis (음성분석의 최근 연구 동향에 관한 문헌적 고찰)

  • Park, Chan-Kyu;Park, Young-Jae;Park, Young-Bae
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.13 no.1
    • /
    • pp.65-71
    • /
    • 2009
  • Objective : To review studies about acoustic analysis and to study its medical application. Method : We investigate the research results through internet search engines, such as Pubmed. Conclusions : I would like to conclude that there should be continued study, along with the objectification and quantification of diagnosis and application of acoustic analysis in the wide variety of oriental medicine.

  • PDF