• Title/Summary/Keyword: acoustic control

Search Result 861, Processing Time 0.031 seconds

Continuous Cultivation of Lactobacillus rhamnosus with Cell Recy-cling Using an Acoustic Cell Settler

  • Yang, Yun-Jeong;Hwang, Sung-Ho;Lee, Sang-Mok;Kim, Young-Jun;Koo, Yoon-Mo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.6
    • /
    • pp.357-361
    • /
    • 2002
  • Continuous production of lactic acid from glucose by Lactobacillus rhamnosus with cell recycling using an acoustic cell settler was carried out. The performance of the system, such as the concentration of cell and product were compared with the control experiment without recycling. The acoustic settler showed cell separation efficiency of 67% during the continuous operation and the cell concentration in the fermentor with recycle exceeded that of the control by 29%. Com-pared with the control, tactic acid production was increased by 40%, while glucose consumption was only increased by 8%. The higher value of lactic acid production to substrate consumption (Yp/s, product yield coefficient) achieved by cell recycling is interpreted to indicate that the recycled cell mass consumes less substrate to produce the same amount of product than the control Within system environmental changes due to the longer mean cell residence time induced the cells maintaining the metabolic pathways to produce Less by-Product but more product, lactic acid.

Position estimation of underground acoustic source origin using a passive SONAR system (수동형 SONAR 시스템을 사용한 지하 진원지의 추정)

  • Jarng Soon Suck;Lee Je Hyeong;Ahn Heung Gu;Choi Heun Ho
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.103-108
    • /
    • 1999
  • The aim of the work described in this paper is to develop a complex underground acoustic system which detects and localizes the origin of an underground hammering sound using an array of hydrophones located about loom underground. Three different methods for the sound localization will be presented, a time-delay method, a power-attenuation method and a hybrid method. In the time-delay method, the cross correlation of the signals received from the array of sensors is used to calculate the time delays between those signals. In the power-attenuation method, the powers of the received signals provide a measure of the distances of the source from the sensors. In the hybrid method, both informations of time-delays and power-ratios are coupled together to produce better performance of position estimation. A new acoustic imaging technique has been developed for improving the hybrid method. This new acoustic imaging method shows the multi-dimensional distribution of the normalized cost function, so as to indicate the trend of the minimizing direction toward the source location. For each method the sound localization is carried out in three dimensions underground. The distance between the true and estimated origins of the source is 28m for a search area of radius 250m.

  • PDF

Reduction of Radiated Noise by Eigen-property Control (구조물의 고유특성 제어를 통한 방사 소음 저감)

  • 최성훈
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.376-382
    • /
    • 2004
  • The interaction between a vibrating structure and a surrounding acoustic medium determines the acoustic power propagating into the far-field. A straightforward method to reduce the radiated power is to reduce the vibration of the structure. However it is more efficient to control the modes of the structure separately since each vibration mode of the structure has different radiation efficiency. An efficient method to reduce the sound radiation in the low frequency region is proposed by reducing the radiation efficiency of the structure. Numerical simulations are carried out for a simply-supported beam in which the feed-forward control is applied to reduce the volume velocity of each structural mode. This method is found to be very efficient in reducing low frequency sound radiation.

A Study on the Adaptive Active Noise Control Using the Self-tuning feedback controller (자기동조 피이드백 제어기를 이용한 적응 능동소음제어에 관한 연구)

  • Shin, Joon;Lee, Tae-Yeon;Kim, Heung-Seob;Jo, Seong-Oh;Bang, Seung-Hyun;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.04a
    • /
    • pp.140-146
    • /
    • 1993
  • Active noise control uses the intentional superposition of acoustic waves to create a destructive interference pattern such that a reduction of the unwanted sound occurs. In active noise control system the choice of a control structure and design of the controller are the main issues of concern. In real acoustic fields there are a vast number of noise sources with time-varying nature and the characteristics of transducers and the geometric set-up of control system are subject to change. Accordingly the control system should be designed to adapt such circumstances so that required level of performance is maintained. In this paper, the adaptive control algorithm for self-tuning adaptive controller is presented for the application in active noise control system. Self-tuning is a direct integration of identification and controller design algorithm in such a manner that the two processes proceed sequentially. The least mean square algorithm was used for the identification schemes and adaptive weighted minimum variance control algorithm was applied for self-tuning controller. Computer simulation results for self-tuning feedback controller are presented. And simulation results was shown to be useful for the situation in which the periodic noise sources act on the acoustic field.

  • PDF

Effects of Various Baffle Designs on Acoustic Characteristics in Combustion Chamber of Liquid Rocket Engine

  • Sohn, Chae-Hoon;Kim, Seong-Ku;Kim, Young-Mog
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.145-152
    • /
    • 2004
  • Effects of various baffle designs on acoustic characteristics in combustion chamber are numerically investigated by adopting linear acoustic analysis. A hub-blade configuration with five blades is selected as a candidate baffle and five variants of baffles with various specifications are designed depending on baffle height and hub position. As damping parameters, natural-frequency shift and damping factor are considered and the damping capacity of various baffle designs is evaluated. Increase in baffle height results in more damping capacity and the hub position affects appreciably the damping of the first radial resonant mode. Depending on baffle height, two close resonant modes could be overlapped and thereby the damping factor for one resonant mode is increased exceedingly. The present procedure based on acoustic analysis is expected to be a useful tool to predict acoustic field in combustion chamber and to design the passive control devices such as baffle and acoustic resonator.

A Study on the Effect of Acoustic Properties on the Absorption Characteristics of Polyester Fiber Materials (폴리에스터 흡음재 흡음특성에의 음향 물성치 영향평가 연구)

  • Park, Hern-Jin;Jeong, Myong-Guk;Shim, Sung-Young;Lee, Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.885-891
    • /
    • 2003
  • Effects of each acoustic property on absorption characteristics of polyester fiber materials has been studied in this paper. It would be impossible for us to measure effects of each acoustic property by experimental method since we cannot make sound-absorbing materials in which only one of the properties is changed. We have adopted a numerical prediction method to carry out parameter studies for each acoustic property. And to get a general behavior of acoustic performance of the materials, the numerical simulation has been repeated to several cases of different bulk density. Finally we have obtained frequency-dependent control factors in the absorption performance which gives us design capability of acoustic absorbing materials.

  • PDF

Active Control of Propagated Noise through Opening of Enclosures Surrounding a Noise Source (음원을 둘러싼 인클로저 개구부를 통해 전파되는 소음의 능동 제어)

  • Lee, Hanwool;Hong, Chinsuk;Jeong, Weuibong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.4
    • /
    • pp.223-231
    • /
    • 2015
  • Enclosures are widely used to alleviate the contribution of machinery noise. It has been long concerned with the noise transmission through the access openings of the enclosures. In this study, we investigate active noise control technology for reduction of the transmission. A numerical model based on the acoustic boundary element method is first established. Using the numerical model, the acoustic transfer functions of the field points over the opening to the primary source at arbitrary locations are estimated. The feedforward control to minimize the acoustic power through the opening is then numerically implemented. The controller drives the secondary source to destructively interfere the noise transmission through the opening. Finally, a parametric study is conducted to evaluate the effects of the location and the number of the microphones on the control performance. Furthermore, the effects of the location of the secondary source on the performance of active noise control are investigated. It is followed that the control system implemented in this study leads to a significant reduction of about 31.5 dB in the sound power through the opening using only one secondary source located at the optimized position.

Active Noise Control Using Sensory Actuator (자기감응 액추에이터를 이용한 능동소음제어)

  • Go, Byeong-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1573-1581
    • /
    • 1996
  • This paper present as experimental demonstratio of DSP and a sensory actuator that is used to actively control sound transmission/radiation through a vibrating plate. A plane acoustic wave incident on a clamped, thin circular plate was used as a noise source, and a sensory actuator bounded to the plate was used to control and sense vibration of the plate. The sound transmission reduction problem was tranformed as a structural vibration control problem that actively control the structural vibration modes coupled to acoustic modes. The results show that the first structural vibration mode is controlled with a reduction of 78 percent in the displacement and velocity of the plate. This corresponds to a 13dB reduction in the acoustic response. These experimental results indicate that a sensory actuator bounded to the plate can be employed to attenuate the sound transmitted to radiated from the plate.

Active Control of Transmitted Noise through Opening of Enclosures Surrounding a Noise Source (음원을 둘러싼 인클로저 개구부를 통해 투과되는 소음의 능동 제어)

  • Lee, Hanwool;Hong, Chinsuk;Jeong, Weuibong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.796-802
    • /
    • 2013
  • In this study, we investigates active control technology to reduce the noise transmitted to the outside through the opening of enclosures. A numerical model based on acoustic boundary element method is first established. Using the numerical model, the acoustic transfer functions of the field points over the opening to the primary source at arbitrary locations are estimated. The feedforward control to minimize the acoustic power through the opening is then numerically implemented. The controller generates the secondary source to destructively interfere the noise transmission through the opening. Finally, a parametric study is conducted to evaluate the effects of the location and the number of the microphones on the control performance. Furthermore, the effects of the location of the secondary source on the performance of active noise control are investigated. It is followed that the control system implemented in this study leads to a significant reduction of about 35dB in sound power through the open using only on secondary source located at the optimized position.

  • PDF

Localization of an Underwater Robot Using Acoustic Signal (음향 신호를 이용한 수중로봇의 위치추정)

  • Kim, Tae Gyun;Ko, Nak Yong
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.4
    • /
    • pp.231-242
    • /
    • 2012
  • This paper proposes particle filter(PF) method using acoustic signal for localization of an underwater robot. The method uses time of arrival(TOA) or time difference of arrival(TDOA) of acoustic signals from beacons whose locations are known. An experiment in towing tank uses TOA information. Simulation uses TDOA information and it reveals dependency of the localization performance on the uncertainty of robot motion and senor data. Also, comparison of the PF method with the least squares method of spherical interpolation(SI) and spherical intersection(SX) is provided. Since PF uses TOA or TDOA which comes from measurement of external information as well as internal motion information, its estimation is more accurate and robust to the sensor and motion uncertainty than the least squares methods.