• 제목/요약/키워드: acoustic cavity

검색결과 239건 처리시간 0.023초

헬름홀츠 공명기의 흡음성능에 관한 연구 (A Study on the Acoustic Absorption Performance of a Helmholtz Resonator)

  • 송화영;이동훈
    • 한국소음진동공학회논문집
    • /
    • 제18권1호
    • /
    • pp.71-79
    • /
    • 2008
  • A helmholtz resonator has been widely used for the purpose of suppressing the low frequency noises propagated from various heat and fluid machineries. However, the conventional resonator has demerits that the effective absorption bandwidth is narrow and the absorption performance is not so outstanding in the only limited configurations of neck and cavity as well. In order to overcome these problems, in this paper, a resonator with perforated neck is proposed. The absorption performances of the resonator are measured by two-microphone method and estimated by transfer matrix method. The measured values of normal absorption coefficients agree well with the estimated values. By introducing the perforated plates at the neck of a resonator, it is shown that the absorption performance have been significantly improved.

고체모터의 인히비터에 의한 압력 진동 특성 LES 연구 (LES Investigation of Pressure Oscillation in Solid Rocket Motor by an Inhibitor)

  • 홍지석;문희장;성홍계
    • 한국추진공학회지
    • /
    • 제19권1호
    • /
    • pp.42-49
    • /
    • 2015
  • 3차원 Large Eddy Simulation(LES)와 Proper Orthogonal Decomposition(POD) 기법을 이용하여 고체로켓의 인히비터에서 발생하는 연소실내 압력 진동 특성을 분석하였다. 인히비터 후방에서 발생한 와류는 Flow-acoustic coupling에 의해 주기적으로 반복하여 생성, 소멸이 이루어지는 것을 확인하였고, 이 와류가 내삽 노즐 입구 도출부에 충돌하면서 유동이 불균질하게 분해되고, 후방 돔으로 유입된 유동에 의한 압력 진동은 연소실 압력 진동 가진의 원인이 된다. 또한 인히비터에서 발생하는 와흘림(vortex shedding) 주기는 연소실내 와류 발생 주기와 일치하며, 실험에서 측정된 압력 진동 주파수와 비교 분석하였다.

PROCESS OF DESIGNING BODY STRUCTURES FOR THE REDUCTION OF REAR SEAT NOISE IN PASSENGER CAR

  • Kim, K.C.;Kim, C.M.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.67-73
    • /
    • 2007
  • This study analyzes the interior noise that is generated during acceleration of a passenger car in terms of car body structure and panel contribution. According to the transfer method, interior noise is classified into structure-borne noise and air-borne noise. Structure-borne noise is generated when the engine's vibration energy, an excitation source, is transferred to the car body through the engine mount and the driving system and the panel of the car body vibrates. When structure-borne noise resonates in the acoustic cavity of the car interior, acute booming noise is generated. This study describes plans for improving the car body structure and the panel form through a cause analysis of frequency ranges where the sound pressure level of the rear seat relative to the front seat is high. To this end, an analysis of the correlation between body attachment stiffness and acoustic sensitivity as well as a panel sensitive component analysis were conducted through a structural sound field coupled analysis. Through this study, via research on improving the car body structure in terms of reducing rear seat noise, stable performance improvement and light weight design before the proto-car stage can be realized. Reduction of the development period and test car stage is also anticipated.

다종의 가진방법을 이용한 비연성 경향을 가진 차실모형의 모우드 해석 (Modal analysis of a vehicle cabin model having high decoupling tendency)

  • 김시조;조동우;한상욱
    • 오토저널
    • /
    • 제14권1호
    • /
    • pp.25-37
    • /
    • 1992
  • Interior noise in a car is known to have an important influence on product acceptability. This noise is closely correlated with structural-acoustic vibration. When considering noise problem, the structural-acoustic relation of a vehicle cabin model needs to be identified. However, it is very difficult to get the modal parameters of this kind of cabin structure composed of thin plates: because it not only can be excited by the acoustic vibration of cavity, but also tends to have decoupling effects of one plate from another. In order to obtain modal parameters more precisely, various excitation techniques, i.e. impact, pure random, burst random, and swept sine testing are applied for the first step. In the case of the cabin model, impact and swept sine testing show good results. Next, the determination of the excitation point by trial- and-error and the accurate measurements of FRF's are performed with these methods. The modal parameter extraction is carried out for the final step. This paper proposes a new approach to find the modal parameters more reliably in the case of high decoupling effects. That is, the convergence of MIF and MCF in each panel, which provide some criteria for the validity of the obtained modal parameters, is observed. And from those results, the pretty accurate modal parameters can be determined. A comparative assessment between the modal testing and the FEM is also performed.

  • PDF

부정교합환자의 수술전.후 발음변화에 관한 음향학적 특성 (Acoustic Characteristics of Patients' Speech Before and After Orthognathic Surgery)

  • 전경숙;김동칠;황상준;신효근;김현기
    • 음성과학
    • /
    • 제14권3호
    • /
    • pp.93-109
    • /
    • 2007
  • It is reported that the orthognathic patients suffer from not only aesthetic problems but also resonance disorder and articulation disorder because of the abnormality of the oral cavity. This study was designed to investigate the resonance of nasality and the intelligibility of speech for acoustic characteristics of patients' speech before and after orthognatic surgery. 8 orthognathic patients participated in the study. The nasality of words containing Korean consonants, Korean consonants and frequency and intensity of the fricative /s/ were measured using Nasometer and CSL (Computerized Speech Lab). Results were as follows: First, the nasality of post orthognathic surgery patients decreased in spontaneous speech. There was a significant difference in the nasality for all words between pre and post orthognatic surgery patients. Second, the nasality of each Korean consonant phoneme of post orthognathic surgery patients decreased. There was also a significant difference of the nasality for each Korean consonant phoneme between pre and post orthognatic surgery patients. Third, the decreased nasality for Korean consonant phonemes showed in plosives, affricates, fricatives, liquids, and nasals after surgery. But the significant difference showed only in plosives and fricatives. Finally, frequency and intensity for the fricative /s/ of post orthognathic patients increased.

  • PDF

공기유입이 화재강도에 미치는 영향에 대한 실험적인 연구 (An experimental investigation on the errect of air entrainment)

  • 김진국
    • 방재기술
    • /
    • 통권21호
    • /
    • pp.5-12
    • /
    • 1996
  • An experimental investigation has been made with the objcetive of studying the effects of air entrainment of fire strength. A rich jet flame is considered as an fire, and fire, and the air entrainment is controlled by introducing the tone excitation which is generated by means of a loudspeaker-driven cavity. The excitation frequency is chosen for the resonant frequency identified as a pipe resonance due to acoustic excitation. As the excitation intensity increases, the amplitude of oscillating velocity for inducing air entrainment is increased, the flame height decreased and the structure of diffusion flame gradually transformed to that of premixed flame.

  • PDF

1/4 음향공에 의한 연소실 음향거동 해석 (Analysis of Acoustic Behavior of Combustion Chambers with Quarter Wave Cavity)

  • 조용호;윤웅섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1998년도 제10회 학술강연회논문집
    • /
    • pp.28-28
    • /
    • 1998
  • 고주파 연소불안정은 거의 모든 로켓엔진의 개발 프로그램에서 보고되고 있으며, 이 문제의 해결을 위한 많은 연구들이 진행되어 왔다. 고주파 연소불안정은 로켓엔진 연소실 내에서의 연소와 유동변수들이 커플링되어 발생한다. 연소가스의 음향파동은 연소의 외란을 야기하며 외란된 연소는 유동변수들에 맥동에너지를 공급하는 되먹임 과정을 반복하게 된다. 결과적으로 음향파에 의한 외란의 크기, 위상 및 되먹임 과정에서의 파동에너지 감쇠량에 따라 불안정한 파동은 증폭, 유지되거나 소멸된다.

  • PDF

공조용 로터리 압축기의 소음 저감에 관한 연구 (A Study on Noise Reduction of Rotary Compressor)

  • 안병하;김영수
    • 동력기계공학회지
    • /
    • 제3권3호
    • /
    • pp.60-69
    • /
    • 1999
  • The noise and vibration sources of rotary compressor for room air-conditioner are pressure pulsation of compression process, cavity resonance of inner space, structural radiation noise of shell and impact noise of discharge valve. Among them, pressure pulsation is very important noise and vibration source. Because it transferred various kinds of noise and vibration like as mentioned above. In this reason, muffler and resonator are used in order to absorb and remove these noises. But an analytical prediction using acoustic analysis does not coincident with the experimental result. The difference between analysis and actual state is due to the assumption of analysis. This paper covered with new concept of muffler design based on the turbulence kinetic energy of flow by using CFD. From this analysis, it is possible to decide the best position of discharge port of muffler. Therefore $2{\sim}3dB$ noise reduction effect is acquired in rotary compressor of 5000 BTU grade. Also new approach of resonator design is suggested. From this study, the characteristics of resonator and surge hole (a kind of resonator without pipe length) are identified. The former is useful for pure tone noise (narrow frequency band), and the latter is effective for broad frequency band. This paper shows that it is very available to use 3 dimensional analysis of resonator in order to predict more exact tuning frequency. The result is proved by a lot of experiments. From combination of fluid analysis and acoustic analysis, up stream position is effective location of resonator concerning turbulence motion of fluid.

  • PDF

구개인두성형술 후 음성의 음향학적 변화 (The Acoustic Changes of Voice after Uvulopalatopharyngoplasty)

  • 홍기환;김성완;윤희완;조윤성;문승현;이상헌
    • 음성과학
    • /
    • 제8권2호
    • /
    • pp.23-37
    • /
    • 2001
  • The primary sound produced by the vibration of vocal folds reaches the velopharyngeal isthmus and is directed both nasally and orally. The proportions of the each component is determined by the anatomical and functional status of the soft palate. The oral sounds composed of oral vowels and consonants according to the status of vocal tract, tongue, palate and lips. The nasal sounds composed of nasal consonants and nasal vowels, and further modified according to the status of the nasal airway, so anatomical abnormalities in the nasal cavity will influence nasal sound. The measurement of nasal sounds of speech has relied on the subjective scoring by listeners. The nasal sounds are described with nasality and nasalization. Generally, nasality has been assessed perceptually in the effect of maxillofacial procedures for cleft palate, sleep apnea, snoring and nasal disorders. The nasalization is considered as an acoustic phenomenon. Snoring and sleep apnea is a typical disorders due to abundant velopharynx. The sleep apnea has been known as a cessation of breathing for at least 10 seconds during sleep. Several medical and surgical methods for treating sleep apnea have been attempted. The uvulopalatopharyngoplasty(UPPP) involves removal of 1.0 to 3.0 cm of soft palate tissue with removal of redundant oropharyngeal mucosa and lateral tissue from the anterior and sometimes posterior faucial pillars. This procedure results in a shortened soft palate and a possible risk following this surgery may be velopharyngeal malfunctioning due to the shortened palate. Few researchers have systematically studied the effects of this surgery as it relates to speech production. Some changes in the voice quality such as resonance (nasality), articulation, and phonation have been reported. In view of the conflicting reports discussed, there remains some uncertainty about the speech status in patients following the snoring and sleep apnea surgery. The study was conducted in two phases: 1) acoustic analysis of oral and nasal sounds, and 2) evaluation of nasality.

  • PDF

자동차 타이어의 Air-Pumping소음 예측을 위한 수치적 기법 (Numerical Method for Prediction of Air-pumping Noise by Car Tyre)

  • 김성태;정원태;정철웅;이수갑
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.788-798
    • /
    • 2005
  • The monopole theory has long been used to model air-pumped effect from the elastic cavities in car tire. This approach models the change of an air as a Piston moving backward and forward on a spring and equates local air movements exactly with the volume changes of the system. Thus, the monopole theory has a restricted domain of applicability due to the usual assumption of a small amplitude acoustic wave equation and acoustic monopole theory This paper describes an approach to predict the air-pumping noise of a car tyre with CFD/Kirchhoff integral method. The tyre groove is simply modeled as piston-cavity-sliding door geometry and with the aid of CFD technique flow properties in the groove of rolling car tyre are acquired.'rhese unsteady flow data are used as a air-pumping source in the next CFD calculation of full tyre-road geometry. Acoustic far field is predicted from Kirchhoff integral method by using unsteady flow data in space and time which is provided by the CFD calculation of full tyre-road domain. This approach can cover the non-linearity of acoustic monopole theory with the aid of Non-linear governing equation in CFD calculation. The method proposed in this paper is applied to the prediction of air-pumping noise of simply modeled car tyre and through the predicted results, the influence of nonlinear effect on air-pumping noise propagation is investigated.