• Title/Summary/Keyword: acoustic boundary

Search Result 418, Processing Time 0.039 seconds

Vibro-acoustic analysis of un-baffled curved composite panels with experimental validation

  • Sharma, Nitin;Mahapatra, Trupti R.;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.93-107
    • /
    • 2017
  • The article presents the vibration and acoustic responses of un-baffled doubly curved laminated composite panel structure under the excitation of a harmonic point load. The structural responses are obtained using a simulation model via ANSYS including the effect various geometries (cylindrical, elliptical, spherical and hyperboloid). Initially, the model has been established by solving adequate number of available examples to show the convergence and comparison behaviour of the natural frequencies. Further, the acoustic responses are obtained using an indirect boundary element approach for the coupled fluid-structure analysis in LMS Virtual.lab by importing the natural frequency values. Subsequently, the values for the sound power level are computed using the present numerical model and compared with that of the available published results and in-house experimentally obtained data. Further, the acoustic responses (mean-square velocity, radiation efficiency and sound power level) of the doubly curved layered structures are evaluated using the current simulation model via several numerical experimentations for different structural parameters and corresponding discussions are provided in detail.

Acoustic Analysis of Axial Fan using BEM based on Kirchhoff Surface (Kirchhoff Surface를 이용한 Fan 소음 해석)

  • Park Y.-M.;Lee S.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.763-766
    • /
    • 2002
  • A BEM is highly efficient method in the sense of economic computation. However, boundary integration is not easy for the complex and moving surface e.g. in a rotating blade. Thus, Kirchhoff surface is designed in an effort to overcome the difficulty resulting from complex boundary conditions. A Kirchhoff surface is a fictitious surface which envelopes acoustic sources of main concern. Acoustic sources may be distributed on each Kirchhoff surface element depending on its acoustic characteristics. In this study, an axial fan is assumed to have loading noise as a dominant source. Dipole sources can be computed based on the FW-H equation. Acoustic field is then computed by changing Kirchhoff surface on which near-field is implemented, to analyze the effect of Kirchhoff surface on it.

  • PDF

Glottal Characteristics of Word-initial Vowels in the Prosodic Boundary: Acoustic Correlates (운율경계에 위치한 어두 모음의 성문 특성: 음향적 상관성을 중심으로)

  • Sohn, Hyang-Sook
    • Phonetics and Speech Sciences
    • /
    • v.2 no.3
    • /
    • pp.47-63
    • /
    • 2010
  • This study provides a description of the glottal characteristics of the word-initial low vowels /a, $\ae$/ in terms of a set of acoustic parameters and discusses glottal configuration as their acoustic correlates. Furthermore, it examines the effect of prosodic boundary on the glottal properties of the vowels, seeking an account of the possible role of prosodic structure based on prosodic theory. Acoustic parameters reported to indicate glottal characteristics were obtained from the measurements made directly from the speech spectrum on recordings of Korean and English collected from 45 speakers. They consist of two separate groups of native Korean and native English speakers, each including both male and female speakers. Based on the three acoustic parameters of open quotient (OQ), first-formant bandwidth (B1), and spectral tilt (ST), comparisons were made between the speech of males and females, between the speech of native Korean and native English speakers, and between Korean and English produced by native Korean speakers. Acoustic analysis of the experimental data indicates that some or all glottal parameters play a crucial role in differentiating the speech groups, despite substantial interspeaker variations. Statistical analysis of the Korean data indicates prosodic strengthening with respect to the acoustic parameters B1 and OQ, suggesting acoustic enhancement in terms of the degree of glottal abduction and the glottal closure during a vibratory cycle.

  • PDF

On Design of Half-Wave Resonators for Acoustic Damping in a Model Combustion Chamber (모형 연소실내 음향 감쇠를 위한 반파장 공명기의 설계에 관한 연구)

  • Park, Ju-Hyun;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.18-21
    • /
    • 2008
  • Acoustic design parameters of a half-wave resonator are studied experimentally for acoustic stability in a model combustor. According to standard acoustic-test procedures, acoustic-pressure signals are measured. Quantitative acoustic properties of damping factor and sound absorption coefficient are evaluated and thereby, the acoustic damping capacity of the resonator is characterized. The diameter and the number of a half-wave resonator, its distribution are selected as design parameters for optimal tuning of the resonator. Acoustic damping capacity increases as the resonators with diameter increases. The optimum number of resonators or the optimum open-area ratio decreases as boundary absorption decreases.

  • PDF

Acoustic Control of Optional Space Using Optimum Location of Absorbing Material (흡음재 최적배치를 이용한 임의 공간의 음향제어에 관한 연구)

  • 김동영;홍도관;안찬우
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.1048-1054
    • /
    • 2004
  • The Passive acoustic control is used in various fields, such as structures, automobiles, aircraft and so on. It is used in variety of acoustic field with the absorbing material, as one of the methods which can control the acoustic in optional space. In that case of passive control using this absorption material, it would be important to maximize the control performance of material property, numbers, geometry shape and the attached location of boundary area of the absorbing material. But realistically these variables, specially material Property, have no broad choice. Therefore, the position of absorbing material is the most important variable. In this study, we use the optimization method to minimize acoustic energy of optional space in the interest frequency attaching some absorbing materials to the boundary area. For analysis and optimization, this study uses the FEA and the conjugate gradient method. This optimization process is very efficient and useful in the passive acoustic control.

Enhancing the Reconstruction of Acoustic Source Field Using Wavelet Transformation

  • Ko Byeongsik;Lee Seung-Yop
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1611-1620
    • /
    • 2005
  • This paper shows the use of wavelet transformation combined with inverse acoustics to reconstruct the surface velocity of a noise source. This approach uses the boundary element analysis based on the measured sound pressure at a set of field points, the Helmholtz integral equations and wavelet transformation for reconstructing the normal surface velocity field. The reconstructed field can be diverged due to the small measurement errors in the case of nearfield acoustic holography (NAH) using an inverse boundary element method. In order to avoid this instability in the inverse problem, the reconstruction process should include some form of regularization for enhancing the resolution of source images. The usual method of regularization has been the truncation of wave vectors associated with small singular values, although the order of an optimal truncation is difficult to determine. In this paper, a wavelet transformation is applied to reduce the computation time for inverse acoustics and to enhance the reconstructed vibration field. The computational speed-up is achieved, with solution time being reduced to $14.5\%$.

Acoustic-Damping Characteristics of Half-Wave Resonator in a Combustion Chamber of Liquid Rocket Engine (로켓엔진 연소기에서 반파장 공명기의 음향감쇠에 관한 수치적 연구)

  • Sohn Chae-Hoon;Park I-Sun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.9-15
    • /
    • 2005
  • A linear acoustic analysis is performed to explore the characteristics of acoustic damping by a gas-liquid scheme coaxial injector in a liquid rocket engine. The injector can play a role of acoustic resonator. Acoustic-damping characteristics of half-wave resonator are compared with those of quarter-wave resonator. Various effects of the boundary absorption coefficient, injector length and sound speed in combustion chamber and resonator are investigated. As a result, short tuning length of resonator and low sound speed of the medium have a favorable effect on acoustic damping. As the boundary absorption coefficient decreases, the tuning range of the resonator length becomes narrower.

Acoustic Source Power Control and Global Noise Reduction by Selection of Distribution and Impedance of Absorptive Materials in Acoustically Small Enclosures (흡음재의 배치와 임피던스 선정을 통한 음원 방사파워 제어와 전역 소음 감소)

  • 김양한;조성호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.668-674
    • /
    • 2004
  • The possibility of global noise reduction by the sound power control through selection of distribution and impedance of absorptive materials is discussed. It is necessary to investigate the relation between the global sound energy in the field and the total sound power radiated by sources. In the previous work,$^{(1.2)}$ the authors presented a useful design method to change boundary condition that can be useful to reduce noise in acoustically small enclosures. Changing boundary condition Is related to not only enclosure’s geometrical shape but also acoustical treatment on walls for example, attaching of impedance patches (ex: absorptive material). In many practical situations, we often meet situation to change acoustical treatment on walls. The possibility of total acoustic potential energy(globa1 noise) reduction by acoustic source power control is examined in an acoustically small cavity Using acoustic energy balance equation, the relation between global noise control performance and absorptive material’s arrangement/impedance is deduced. Numerical simulation is performed to interpret its physical meaning in terms of absorbent’s distribution and impedance.

A Study on Outdoor Acoustic Noise for HVDC Converter Station (HVDC 변환소의 옥외소음 분석)

  • Lee, Seong-Doo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.91-99
    • /
    • 2010
  • HVDC converter station consists of a number of equipment such as converter transformer, ac filter, thyristor valve and so on. They can be acoustic noise sources. In this paper, we analyzed the simulation results of the outdoor acoustic noise for HVDC converter station. It shows that maximum noise level in boundary of HVDC converter station exceeds regulation value. The main factors in generating maximum noise level are ac filter and converter transformer. Then we applied some soundproof countermeasures in HVDC converter station. Shielding wall is enough to reduce transformer noise level but not enough to reduce ac filter noise level. In case of ac filter, soundproof building is effective in satisfying noise level regulation in boundary of HVDC converter station. In addition, we also studied effects of season, soundproof woods, ground.

Acoustic Characteristics of a Loudspeaker Obtained by Vibroacoustic Analysis (진동/음향 일방연성해석에 의한 스피커의 음향특성 연구)

  • 김준태;김정호;김진오;민진기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.153-159
    • /
    • 1996
  • The acoustic characteristics of a direct radiator type loudspeaker has been studied in this paper. The vibration displacement of the speaker cone paper obtained by the finite element analysis has been converted into the vibration velocity and used as a boundary condition for the acoustic analysis. The frequency characteristics and the sound pressure distribution of the loudspeaker resulted from the radiation of the cone vibration have been calculated by the boundary element analysis. The numerical results have been verified by experiments carried out in an anechoic chamber. The variations of the acoustic characteristics due to the changes of some design parameters have been examined using the numerical model.

  • PDF