• Title/Summary/Keyword: acoustic analysis

Search Result 2,496, Processing Time 0.026 seconds

Detection of Main Spindle Bearing Defects in Machine Tool by Acoustic Emission Signal via Neural Network Methodology (AE 신호 및 신경회로망을 이용한 공작기계 주축용 베어링 결함검출)

  • 정의식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.46-53
    • /
    • 1997
  • This paper presents a method of detection localized defects on tapered roller bearing in main spindle of machine tool system. The feature vectors, i.e. statistical parameters, in time-domain analysis technique have been calculated to extract useful features from acoustic emission signals. These feature vectors are used as the input feature of an neural network to classify and detect bearing defects. As a results, the detection of bearing defect conditions could be sucessfully performed by using an neural network with statistical parameters of acoustic emission signals.

  • PDF

Analysis of Noise Characteristic Considering Magnetic Force of IPM Motor (매입형 영구자석 전동기의 전자기력을 고려한 소음특성 분석)

  • Lee, Hong-Joo;Kwon, Joong-Hak;Lee, Chang-Min;Hwang, Gun-Yong;Hwang, Sang-Moon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.439-446
    • /
    • 2009
  • Noise sources in electric machines are broadly categorized as magnetic, mechanical, electronic and aerodynamic. Especially, there are several kinds of noise sources due to the change of reluctance by rotor position in IPM motor. To separate acoustic noise by mechanical structure and electromagnetic sources, resonance frequency and the effect of vibration and acoustic noise by electromagnetic sources are analyzed. And then, the structural and electromagnetic designs to reduce acoustic noise are performed. The relevance about the study on noise reduction of IPM motor is verified by noise experiment, noise and vibration analysis.

Analysis of Noise Characteristic Considering Magnetic Force of IPM Motor (매입형 영구자석 전동기의 전자기력을 고려한 소음특성 분석)

  • Lee, Hong-Joo;Kwon, Joong-Hak;Kim, Kwang-Suk;Hwang, Gun-Yong;Hwang, Sang-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.206-211
    • /
    • 2008
  • Noise sources in electric machines are broadly categorized as magnetic, mechanical, electronic and aerodynamic. Especially, there are several kinds of noise sources due to the change of reluctance by rotor position in IPM motor. To separate acoustic noise by mechanical structure and electromagnetic sources, resonance frequency and the effect of vibration and acoustic noise by electromagnetic sources are analyzed. And then, the structural and electromagnetic designs to reduce acoustic noise are performed. The relevance about the study on noise reduction of IPM motor is verified by noise experiment, noise and vibration analysis.

  • PDF

Study on Acoustic Resonance of Air-Conditioner Fan BLDC Motor (에어컨 팬 BLDC 전동기의 음향공진에 관한 연구)

  • Lee, Hong-Joo;Kim, Kwang-Suk;Kwon, Joong-Hak;Bang, Ki-Chang;Hwang, Sang-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.212-217
    • /
    • 2008
  • Acoustic noises generated during motor operation in mechanical system are from electromagnetic, mechanical, aerodynamic, and electrical sources. For identification of mechanical noise origins, misalignment, unbalance, fan shape, resonance, and vibration modes have been extensively considered to describe noise behavior. An experiment-based approach as well as a mathematical approach needs to be adopted for a realistic study into noise and vibration of the motor, because motor noise characteristics differ from type to type due to various noise sources. In this paper, a brushless DC motor for air-conditioner fan is analyzed by finite element method to identify noise source, and the analysis results are verified by experiments, and sensitivity analysis is performed by design of experiments.

  • PDF

A Study on the Analysis and Improvement of the Acoustic Characteristics of the Muffler with Complex Geometry (복잡한 형상의 머플러 음향특성 해석 및 개선에 관한 연구)

  • 오상경;모진용;허만선
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.755-762
    • /
    • 1996
  • An acoustic transmission loss analysis method for mufflers with complex geometry is developed using MSC/NASTRAN on the basis of acoustic-structural analogy and two-microphone method. In this study, mufflers with simple and complex shapes are analyzed using this method and compared with theoretical and experimental results to verify it. Applying this method to design of discharge muffler in a rotary compressor, we obtained 2dB(A) of noise reduction in the range of lower than 1300Hz. Futhermore, adopting this technique for a suction muffler in reciprocal compressor, more than 10dB(A) noise reduction at 500Hz, and in total, 3dB(A) noise reduction is achieved.

  • PDF

Unsteady Analysis of Acoustic-Pressure Responses of $N_{2}$ Diluted $H_{2}$ and Air Diffusion Flames (희석된 수소/공기 확산화염의 비정상 음향파 응답특성 해석)

  • Sohn, Chae-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.320-325
    • /
    • 2003
  • Acoustic-Pressure Response of diluted hydrogen-air diffusion flames is investigated numerically by adopting a fully unsteady analysis of flame structures. In the low-pressure regime, the amplification index remains low and constant at low frequencies. As acoustic frequency increases, finite-rate chemistry is enhanced through a nonlinear accumulation of heat release rate, leading to a high amplification index. Finally, the flame responses decrease at high frequency due to the response lag of the transport zone. For a medium-pressure operation and low-frequency excitation, the amplification index is low and constant. It then decreases at moderate frequencies. As frequency increases further, the amplification index increases appreciably due to an intense accumulation effect.

  • PDF

Acoustic omission signals according to the machining conditions of micro-grooving on mold steel (금형강에 미세 그루브 가공시 가공조건에 따른 음향 방출 신호 분석)

  • 곽철훈;김남훈;이은상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.266-269
    • /
    • 2002
  • Research during the past several years has established the effectiveness of acoustic emission (AE)-based sensing methodologies for machine condition analysis and process. AE has been proposed and evaluated for a variety of sensing tasks as well as for use as a technique for quantitative studies of manufacturing process. STD11 has been known as difficult-to-cut materials. For this study, the micro-grooving machine was developed. The experiments were performed using diamond blade and CBN blade f3r machining STD11. Evaluating the machining conditions, frequency spectrum analysis of acoustic emission (AE) signals according to each conditions were applied.

  • PDF

Prediction of HVAC System Noise by Acoustic Power Balancing Method (음향파워 평형방법을 이용한 HVAC 시스템 소음예측)

  • 홍진무;최태묵;김병희;조대승;김동해
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1306-1312
    • /
    • 2001
  • In this study. the acoustic power balancing method to analysis HVAC system noise is presented. The method can consider not only forward but also backward propagations of noise generated by the operation of air supply units and aerodynamical disturbance at duct elements. This can be done by estimating sound transmission and reflection properties of duct elements. and balancing acoustic powers of total HVAC system. To verify the accuracy of the presented method. numerical analysis for a HVAC system is carried out and the results are compared with those obtained by a traditional empirical method. suggested by National Environmental Balancing Bureau.

  • PDF

Acoustic Mode Analysis to Identify Cavity Noise of Scroll Compressor (스크롤 압축기의 공동 소음 규명을 위한 음향모드 분석)

  • Kim, Seung-Yup;Lee, Dong-Soo;Suh, Jeong-Hwan;Heo, Dae-Nyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.83-88
    • /
    • 2004
  • Acoustic modes of internal region of 4-hp scroll compressor are identified by measuring transfer functions between a reference and 84 measuring points. The corresponding acoustic mode-shapes and natural frequencies were calculated by analysis software SYSNOISE. There exist two clearly distinguishable dipole modes of vertical and horizontal direction and a single quadrupole mode in the frequency region of interest. It shows that the natural frequencies of the identified modes are linearly sensitive to suction pressure (Ps) but relatively in sensitive to discharge pressure (Pd) in operating condition.

  • PDF

DESIGN SENSITIVITY ANALYSIS AND OPTIMIZATION OF ZWICKER'S LOUDNESS (Zwicker 라우드니스에 대한 설계 민감도 해석 및 최적화)

  • Kang, Jung-Hwan;Wang, Se-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.149-154
    • /
    • 2004
  • The design sensitivity analysis of Zwicker's loudness with respect to structural sizing design variables is developed. The loudness sensitivity in the critical band is composed of two equations, the derivative of main specific loudness with respect to 1/3-oct band level and global acoustic design sensitivities. The main specific loudness is calculated by using FEM, BEM tools. i.e. MSC/NASTRAN and SYSNOISE. And global acoustic sensitivity is calculated by combining acoustic and structural sensitivity using the chain rule. Structural sensitivity is obtained by using semi-analytical method and acoustic sensitivity is implemented numerically using the boundary element method. For sensitivity calculation, sensitivity analyzer of loudness (SOLO), in-house program is developed. A 1/4 scale car cavity model is optimized to show the effectiveness of the proposed method.

  • PDF