• 제목/요약/키워드: acidosis

검색결과 283건 처리시간 0.021초

Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episode with m.3243A>G variant involving the cerebellum and basal ganglia

  • Chungmo Koo;Jaejin Yang;Jeong Rye Kim;Jeesuk Yu
    • Journal of Genetic Medicine
    • /
    • 제21권1호
    • /
    • pp.36-40
    • /
    • 2024
  • Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episode (MELAS) syndrome is a maternally inherited mitochondrial disorder that usually affects the cerebral cortex and prevents high-energy demands from being met. Herein, we present the case of a male patient who rapidly developed multiple seizures, headaches, and altered mentality accompanied by severe metabolic acidosis and lactic acidosis. Initially, a brain imaging study confirmed stroke-like lesions (SLLs) only in the cerebellum. During follow-up, newly developed SLLs with lactic acidosis were observed in the basal ganglia (BG), cerebellum, and occipital lobe. The m.3243A>G variant had been found in the patient and MELAS was diagnosed, despite the BG and cerebellum being atypical locations for SLLs in MELAS. Since most cases of m.3243A>G variant MELAS show SLLs in the cerebral cortex, this case is unusual considering the location of the lesion. We emphasize that in the case of lactic acidosis accompanied by neurological symptoms, such as seizures, as in this case, MELAS should be included in the differential diagnosis, even if SLLs are observed in areas other than the cerebral cortex.

대사성 산증, 기도저항 변화 및 미주신경 절단이 구호흡 발생에 미치는 영향 (THE INFLUENCE OF METABOLIC ACIDOSIS, AIRWAY RESISTANCE AND VAGOTOMY ON THE DEVELOPMENT OF MOUTH BREATHING)

  • 손우성;양원식
    • 대한치과교정학회지
    • /
    • 제20권1호
    • /
    • pp.47-59
    • /
    • 1990
  • Respiration is one of the most important functions which are carried out in stomatognathic system. When nasal orifice is obstructed or the resistance of upper airway is increased mouth breathing is initiated. Mouth breathing is regarded as an important etiologic factor of dentofacial anomalies. This experiment was performed to observe the influences of metabolic acidosis, tracheal resistance and vagotomy on mouth breathing. After rabbits were anesthetized with sodium pentobarbital, a pair of wire electrode was inserted into mylohyoid muscle, anterior belly of digastric muscle and dilator naris muscle to record EMG activity. Femoral vein and artery were cannulated for infusion of 0.3N HCl and collection of blood sample to determine the blood pH, and tracheal intubation was done to control airway resistance. Mouth breathing was induced by metabolic acidosis. Increase of the airway resistance through tracheal cannula intensified the activity of dilator naris, mylohyoid and digastric muscle. The higher the resistance, the larger the EMG amplitude. After bilateral vagotomy, respiratory volume and inspiatory time were increased and the activities of dilator naris, mylohyoid and digastric muscle were strengthened. It was concluded that the muscle activity related to mouth breathing was induced by metabolic acidosis and increase of tracheal tube resistance.

  • PDF

A Pediatric Case of Long-term Untreated Distal Renal Tubular Acidosis

  • Kedsatha, Philavanh;Shin, Hee Young;Choi, Yong;Cheong, Hae Il;Cho, Tae-Joon;Yi, Eunsang;Maisai, Mayfong
    • Childhood Kidney Diseases
    • /
    • 제24권2호
    • /
    • pp.115-119
    • /
    • 2020
  • Distal renal tubular acidosis (dRTA) is a rare renal tubular disorder characterized by normal anion gap metabolic acidosis, hypokalemia, and high urine pH. It can be inherited or acquired. In untreated pediatric patients with dRTA, rickets and growth retardation are common. We report the case of a 12-year-old Lao girl who presented with typical clinical features of dRTA with severe bone deformities that developed after a bed-ridden state due to a bicycle accident at the age of 8 years. Initial laboratory tests revealed metabolic acidosis with a normal anion gap, hypokalemia, and alkali urine. Renal ultrasonography revealed bilateral medullary nephrocalcinosis. Whole exome sequencing revealed no pathogenic mutations. After treatment with oral alkali, potassium, and vitamin D, she could walk and run. Later, she underwent corrective orthopedic surgeries for bony deformities. Thus, in pediatric dRTA patients, despite severe symptoms remaining untreated, accurate diagnosis and proper management can improve quality of life.

급성산-염기 균형장해때의 국소 혈류량 변화 (Local blood flow in acute respiratory and metabolic acid-base distrubances in dog)

  • 김삼현;이영균;김우겸
    • Journal of Chest Surgery
    • /
    • 제17권1호
    • /
    • pp.101-109
    • /
    • 1984
  • The influences of acute respiratory and metabolic acid-base disturbances on the carotid, renal and coronary blood flow were measured in dogs. Respiratory acidosis was induced by artificial respiration with 8% CO2 -02 gas mixture and respiratory alkalosis was induced by hyperventilation under the control of respirator. Metabolic acidosis and metabolic alkalosis were induced by intravenous infusion of 0.3N hydrochloric acid and 0.6M sodium bicarbonate solution. To observe the effect of hyperkalemia, isotonic potassium chloride solution was infused. CVI electromagnetic flowmeter probes were placed on the left common carotid artery, left renal artery and left circumflex coronary artery. Each flow was recorded on polygraph. 1. The carotid blood flow showed rapid showed rapid and marked increase in acute respiratory acidosis. Even in the cases when arterial blood pressure was lowered during the state of respiratory acidosis, carotid blood flow increased. By the infusion of hydrochloric acid, carotid blood flow increased slowly and returned to the previous label after discontinuation of the infusion. Carotid blood flow also increased by the infusion of large amount of sodium bicarbonate, but it might be the combined effect of expansion of extracellular fluid and compensatory elevation of carbon dioxide tension. 2.The renal blood flow remained unchanged during the acute acid-base disturbances, suggesting effective autoregulation. Renal blood flow, however, increased very slowly when the infusion of potassium chloride continued for a long period. 3.Although less marked than the carotid blood flow, the coronary blood flow increased in the acute respiratory and metabolic acidosis. In asphyxiated condition, coronary blood flow increased most markedly and this might be the combined effect of hypoxia, hypercapnea, and lowering of pH. In summary, the carotid blowflow showed more marked change in the acute respiratory and metabolic acidosis than the renal and coronary blood flow. Respiratory and metabolic components of acid-base disturbances may influence the local blood flow concomitantly, there being more differences in the individual responses, but respiratory component manifested more rapid and marked effect than metabolic component.

  • PDF

The optimal model of reperfusion injury in vitro using H9c2 transformed cardiac myoblasts

  • Son, Euncheol;Lee, Dongju;Woo, Chul-Woong;Kim, Young-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권2호
    • /
    • pp.173-183
    • /
    • 2020
  • An in vitro model for ischemia/reperfusion injury has not been well-established. We hypothesized that this failure may be caused by serum deprivation, the use of glutamine-containing media, and absence of acidosis. Cell viability of H9c2 cells was significantly decreased by serum deprivation. In this condition, reperfusion damage was not observed even after simulating severe ischemia. However, when cells were cultured under 10% dialyzed FBS, cell viability was less affected compared to cells cultured under serum deprivation and reperfusion damage was observed after hypoxia for 24 h. Reperfusion damage after glucose or glutamine deprivation under hypoxia was not significantly different from that after hypoxia only. However, with both glucose and glutamine deprivation, reperfusion damage was significantly increased. After hypoxia with lactic acidosis, reperfusion damage was comparable with that after hypoxia with glucose and glutamine deprivation. Although high-passage H9c2 cells were more resistant to reperfusion damage than low-passage cells, reperfusion damage was observed especially after hypoxia and acidosis with glucose and glutamine deprivation. Cell death induced by reperfusion after hypoxia with acidosis was not prevented by apoptosis, autophagy, or necroptosis inhibitors, but significantly decreased by ferrostatin-1, a ferroptosis inhibitor, and deferoxamine, an iron chelator. These data suggested that in our SIR model, cell death due to reperfusion injury is likely to occur via ferroptosis, which is related with ischemia/reperfusion-induced cell death in vivo. In conclusion, we established an optimal reperfusion injury model, in which ferroptotic cell death occurred by hypoxia and acidosis with or without glucose/glutamine deprivation under 10% dialyzed FBS.

METABOLIC ACIDOSIS INFLUENCES ON RENAL SODIUM HANDLING IN CADMIUM-INTOXICATED RATS

  • Kim, Yung-Kyu
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 Current Trends in Toxicological Sciences
    • /
    • pp.107-107
    • /
    • 2002
  • It has been reported that antinatriuresis is induced by acute cadmium intoxication. However, the mechanisms related to the increase in renal sodium reabsorption by cadmium exposure is not clear yet although it has been suggested that the elevated aldosterone might involve in this process.(omitted)

  • PDF

Epinephrine-induced lactic acidosis in orthognathic surgery: a report of two cases

  • Son, Hee-Won;Park, Se-Hun;Cho, Hyun-Oh;Shin, Yong-Joon;Son, Jang-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제42권5호
    • /
    • pp.295-300
    • /
    • 2016
  • Submucosal infiltration and the topical application of epinephrine as a vasoconstrictor produce excellent hemostasis during surgery. The hemodynamic effects of epinephrine have been documented in numerous studies. However, its metabolic effects (especially during surgery) have been seldom recognized clinically. We report two cases of significant metabolic effects (including lactic acidosis and hyperglycemia) as well as hemodynamic effects in healthy patients undergoing orthognathic surgery with general anesthesia. Epinephrine can induce glycolysis and pyruvate generation, which result in lactic acidosis, via ${\beta}2$-adrenergic receptors. Therefore, careful perioperative observation for changes in plasma lactate and glucose levels along with intensive monitoring of vital signs should be carried out when epinephrine is excessively used as a vasoconstrictor during surgery.

Lowe 증후군을 동반한 소아치과 환자의 전신 마취 경험 -증례 보고- (An Anesthetic Management in a Pedodontic Patient with Lowe Syndrome - A case report -)

  • 최영규;오재열;김동옥;신옥영;이긍호
    • 대한치과마취과학회지
    • /
    • 제2권1호
    • /
    • pp.33-37
    • /
    • 2002
  • The oculo-cerebro-renal syndrome of Lowe (Lowe syndrome) is an X-linked recessive disorder involving the eyes, nervous systems, and kidneys. The clinical manifestation of this syndrome is characterized by congenital cataracts, glaucoma, seizure disorder, psychomotor growth retardation, hypotonia, renal tubular acidosis, aminoaciduria, rickets, and osteoporosis. We report a 5-year old boy underwent general anesthesia for the treatment of multiple dental carries. During intraoperative period, marked metabolic acidosis was noted and such acidosis was partially corrected by hyperventilation. We suggest that patients with Lowe's syndrome should be attention and treated to possible anesthetic hazards such as metabolic acidosis due to renal tubular dysfunction, rise of intraocular pressure in patient with glaucoma, the fragility of the bone structures due to rickets and osteoporosis.

  • PDF