• 제목/요약/키워드: acidic compounds

검색결과 203건 처리시간 0.023초

8-Methyl-8,14-cycloberbine 유도체 합성 (Synthesis of 8-Methyl-8,14-cycloberbine Derivatives)

  • 황순호;김재현;임형엽;김신규
    • 약학회지
    • /
    • 제38권4호
    • /
    • pp.451-454
    • /
    • 1994
  • In accordance with reported references, 8-methyl-8,14-cycloberbine was derived from berberinephenolbetaine. On acidic treatment the 8-methyl-8,14-cycloberbines were converted easily to the compounds $1{\sim}7$ in good yields. We developed a novel method for a synthesis of the C8-N bond adduct compounds 8 and 9 from 8-methyl-8,14-cycloberbine by treatment with oxalyl chloride, and 1,3-dichloroaceton.

  • PDF

The Effect of pH on the Formation of Furfural Compounds in the Glucose and Fructose with Amino Acid Enantiomers in Maillard Reaction

  • Kim, Ji-Sang;Lee, Young-Soon
    • Preventive Nutrition and Food Science
    • /
    • 제13권1호
    • /
    • pp.54-59
    • /
    • 2008
  • This study was conducted to investigate the effect of pH on the formation of furfural compounds from glucose and fructose reacting with amino acid enantiomers in the Maillard reaction. Hydroxymethylfurfural (HMF) content was highest at pH 4.0, and decreased with increasing pH. HMF was significantly higher in glucose-based systems than fructose-based systems. Furfuryl alcohol (FFA) and 5-methyl-2-furaldehyde (MF) were not increased with increasing pH, and only small amounts were formed. In addition, 2-furaldehyde (F) was found to increase in the systems, as pH increased. However, the content was small and variable. 2,5-Dimethyl-4-hydroxy-3(2H)-furanone (DMHF) was only found in Glc/D-Asn, Glc/L-Lys and Fru/D-Lys system, but the content was not increased with increasing pH. 2-acetylfuran (AF) was higher in Glc (or Fru)/L-Lys and Glc (or Fru)/D-Lys systems at pH 7.0. However, at pH 4.0, the content of AF was higher in the Glc (or Fru)/Gly and Glc (or Fru)/L-Asn systems. Therefore, this study aimed to observe the effect of pH, sugars and amino acid enantiomers on the production of furfural and related compounds by the Maillard reaction. A clear tendency was observed for some classes of compounds to be more easily formed at higher or lower pH. HMF was more readily formed at lower pH, while FFA, F, DMHF and MF were inhibited by acidic conditions. Particularly, compounds like FFA, F and MF were not affected by pH changes. In addition, DMHF and MF were only formed in L-Lys and D-Lys system.

Peroxidase Activity Boosting by Various Nitrogenous Compounds

  • Lee, Dong-Joo;Kim, Soung-Soo;Lee, Mi-Young
    • BMB Reports
    • /
    • 제33권4호
    • /
    • pp.312-316
    • /
    • 2000
  • Effects of various nitrogenous compounds on the peroxidative activity of Korean radish (Rophanus sativus L.) isoperoxidase $A_1$ were examined by using anilino substrates, such as dianisidine and phenylenediamine. We also used phenolic substrates such as guaiacol, chlorogenic acid, caffeic acid, ferulic acid and esculetin. The peroxidation of dianisidine was stimulated by adenine and imidazole as much as 5 fold and 11 fold, respectively at pH 8. Moreover, about 4.8 fold and 8 fold stimulation of phenylenediamine peroxidation occurred by adenine and imidazole, respectively at pH 8. The stimulation by adenine and imidazole did not occur at the acidic pH range. The peroxidations of phenolic substrates, such as guaiacol, chlorogenic acid, caffeic acid, ferulic acid and esculetin, were not boosted greatly by any of the nitrogenous compounds tested. Notably, ammonium salt, which has been known for the excellent booster of horseradish peroxidase, did not affect the peroxidation of the Korean radish isoperoxidase $A_1$. The kinetic studies of dianisidine peroxidation with imidazole, as a model of boosting reaction, showed that neither the affinity of imidazole against dianisidine, nor the activation energy of dianisidine peroxidation changed during the activity boosting of isoperoxidase $A_1$.

  • PDF

Angiotensin 변환 효소 억제제인 Captopril 유도체들의 구조와 활성관계 연구: 수용액상의 분자동력학적 연구의 중요성 (Structure-Activity Relationships Study of Angiotensin Converting Enzyme Inhibitor Captopril Derivatives: Importance of Solution Moleculnr Dynamics Study)

  • 지명환;윤창노;진창배;박종세
    • Biomolecules & Therapeutics
    • /
    • 제2권1호
    • /
    • pp.34-38
    • /
    • 1994
  • In order to investigate the structure-activity relationships of the stereoisomers of angiotensin converting enzyme inhibitors, captopril and its derivatives were selected as model compounds. In vitro enzymatic activities of them depend on the symmetry at the asymmetric carbons. Especially, the alanyl carbon should have the S configuration to be biologically active. But the demethylated captopril having the achiral carbon also shows the activity although it is less active than captopril. Seven stereoisomers of captopril and its derivatives were chosen and their acidic and ionic forms were used for molecular dynamics simulations. Four computer simulations were practiced for each model compound in order to obtain the good condition for simulation to explain the experimental structure-activity relationships. From the computer simulation results, relativistic movements of three well-known pharmacophoric sites, carboxylate carbon, carbonyl oxygen, and sulfur atoms, were analyzed. Good results were obtained from the aqueous solution molecular dynamics simulation with ionic forms of model compounds. Active model compounds have the pharmacophoric areas of 6.08 to 6.38 $\AA$$^2$and the similarity in the geometrical data. But inactive ones have the largely deviated values of 4.51 to 4.87 $\AA$$^2$from those of active ones.

  • PDF

Prediction Acidity Constant of Various Benzoic Acids and Phenols in Water Using Linear and Nonlinear QSPR Models

  • Habibi Yangjeh, Aziz;Danandeh Jenagharad, Mohammad;Nooshyar, Mahdi
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권12호
    • /
    • pp.2007-2016
    • /
    • 2005
  • An artificial neural network (ANN) is successfully presented for prediction acidity constant (pKa) of various benzoic acids and phenols with diverse chemical structures using a nonlinear quantitative structure-property relationship. A three-layered feed forward ANN with back-propagation of error was generated using six molecular descriptors appearing in the multi-parameter linear regression (MLR) model. The polarizability term $(\pi_1)$, most positive charge of acidic hydrogen atom $(q^+)$, molecular weight (MW), most negative charge of the acidic oxygen atom $(q^-)$, the hydrogen-bond accepting ability $(\epsilon_B)$ and partial charge weighted topological electronic (PCWTE) descriptors are inputs and its output is pKa. It was found that properly selected and trained neural network with 205 compounds could fairly represent dependence of the acidity constant on molecular descriptors. For evaluation of the predictive power of the generated ANN, an optimized network was applied for prediction pKa values of 37 compounds in the prediction set, which were not used in the optimization procedure. Squared correlation coefficient $(R^2)$ and root mean square error (RMSE) of 0.9147 and 0.9388 for prediction set by the MLR model should be compared with the values of 0.9939 and 0.2575 by the ANN model. These improvements are due to the fact that acidity constant of benzoic acids and phenols in water shows nonlinear correlations with the molecular descriptors.

수수 줄기에 함유(含有)된 타감물질(他感物質)의 용매(溶媒)와 pH에 따른 특성구명(特性究明) (Partial Characterization of Allelopathic Substances in Sorghum Stem by Different Organic Solvents and pH)

  • 김상열;에스 케이 디다타;알 피이 로블레스;김길웅;이상철;신동현
    • 한국잡초학회지
    • /
    • 제14권1호
    • /
    • pp.42-48
    • /
    • 1994
  • 수수 줄기에 함유된 타감물질의 특성을 구명하기 위해서 극성, 비극성 용매로 분획한 결과 사용한 용매에 따라 억제 효과가 달리 나타났는데 ethyl ehter 분획에서 억제작용이 가장 크게 나타났으며 또 methylene chloride와 ethyl acetate 분획에서도 8mg/ml과 16mg/ml 농도에서 상당한 억제 효과가 나타났으나 hexane과 남은 수용층 분획에서는 거의 억제 효과가 나타나지 않았다. Ethyl ether 분획을 pH에 따라 알칼리성, 중성 및 산성으로 다시 분획한 결과 산성 분획에서 억제 효과가 가장 크게 나타났다. 이상의 결과에서 수수 줄기와 함유하고 있는 타감물질은 비극성이며 산성 특성을 가진 물질이라 추측된다.

  • PDF

Multicomponent assessment and ginsenoside conversions of Panax quinquefolium L. roots before and after steaming by HPLC-MSn

  • Huang, Xin;Liu, Yan;Zhang, Yong;Li, Shuai-Ping;Yue, Hao;Chen, Chang-Bao;Liu, Shu-Ying
    • Journal of Ginseng Research
    • /
    • 제43권1호
    • /
    • pp.27-37
    • /
    • 2019
  • Background: The structural conversions in ginsenosides induced by steaming or heating or acidic condition could improve red ginseng bioactivities significantly. In this paper, the chemical transformations of red American ginseng from fresh Panax quinquefolium L. under steaming were investigated, and the possible mechanisms were discussed. Methods: A method with reversed-phase high-performance liquid chromatography coupled with linear ion trap mass spectrometry ($HPLC-MS^n$)-equipped electrospray ionization ion source was developed for structural analysis and quantitation of ginsenosides in dried and red American ginseng. Results: In total, 59 ginsenosides of protopanaxadiol, protopanaxatriol, oleanane, and ocotillol types were identified in American ginseng before and after steaming process by matching the molecular weight and/or comparing $MS^n$ fragmentation with that of standards and/or known published compounds, and some of them were determined to be disappeared or newly generated under different steaming time and temperature. The specific fragments of each aglycone-type ginsenosides were determined as well as aglycone hydrated and dehydrated ones. The mechanisms were deduced as hydrolysis, hydration, dehydration, and isomerization of neutral and acidic ginsenosides. Furthermore, the relative peak areas of detected compounds were calculated based on peak areas ratio. Conclusion: The multicomponent assessment of American ginseng was conducted by $HPLC-MS^n$. The result is expected to provide possibility for holistic evaluation of the processing procedures of red American ginseng and a scientific basis for the usage of American ginseng in prescription.

환경 및 생체시료 중 과불화 화합물의 분석 동향 (Analytical trend of perfluorinated compounds in environmental and biota samples)

  • 이원웅;장원희;표희수;강태석;홍종기
    • 분석과학
    • /
    • 제23권4호
    • /
    • pp.331-346
    • /
    • 2010
  • 과불화 화합물(perfluorinated compounds, PFCs)은 열과 산성, 염기 등과 같은 화학적 조건에 높은 안정성을 갖고 있을 뿐만 아니라 발수성, 발유성, 방오성과 제품 친화적인 특징 때문에 다양한 산업소재로 활용되고 있으며, 근래에 이르러서는 대규모로 생산되고 있는 산업제품이다. 그러나 난분해성으로 인하여 환경 내에 잔류하여 전세계적으로 널리 분포하고 있을 뿐만 아니라 인체나 동식물에 이르는 생물체에 이르기까지 오염되어 분포하고 있다. 또한 인체를 비롯한 생물체에 장기적으로 축적될 시 암등을 유발할 가능성이 있다고 보고됨에 따라 이에 대한 관심이 증가하고 있다. 최근 스톡홀름 협약에서 과불화 화합물을 새로운 환경지속성오염물질(persistent organic pollutants, POPs)로 규정함에 따라 이에 대한 분석법의 중요성이 대두되고 있다. 본 연구에서는 다양한 환경 및 생체 시료 내에서 과불화 화합물의 분석법에 대한 연구의 중요성 및 문제점과 더불어 최근 연구 동향을 소개하였다.

유용식물로부터 Human Low Density Lipoprotein(LDL)에 대한 항산화제의 탐색 (Screening of Antioxidative Compounds toward Human Low Density Lipoprotein (LDL) from Useful Plants)

  • 임복규;류병호
    • 한국식품영양학회지
    • /
    • 제17권2호
    • /
    • pp.138-146
    • /
    • 2004
  • 본 연구는 유용식물로부터 DPPH free radical scavenger및 사람의 low density lipoprotein(LDL)의 산화에 대한 항산화 효과를 조사하기 위하여 25종의 식물로부터 메탄올로 추출하여 조사하였다. 각종 유용식물 중 항산화 활성은 우수한 달맞이꽃이 가장 높았으며 다시 메타놀로 추출하여 조사한 결과 $\alpha$-tocopherol과 항산화능이 거의 비슷하였다. 메타놀 추출물을 ethylacetate로 추출한 획분이 항산화 활성이 높았으며 ethylacetate 층 중 acidic soluble 획분을 다시 분리한 후 Sepadex LH-20 column chromatography로 추출한 결과 Fraction F-2가 전자공유능이 가장 높았다. 따라서 항산화 활성이 높은Fraction, F-2의 구조를 동정한 결과 3,4-dihydroxybenzoic acid와 3-hyoxycinnamic acid로 확인되었다.

은 이온교환된 ZSM-5 상에서 부탄 및 1-부텐의 방향족화 반응 (Transformation of Butanes and 1-Butene into Aromatic Hydrocarbons over Ag ion-exchanged ZSM-5 Catalyst)

  • 김건중;김광호;고완석;오노 요시오
    • 공업화학
    • /
    • 제5권6호
    • /
    • pp.957-966
    • /
    • 1994
  • HZSM-5와 Ag 이온으로 교환된 ZSM-5를 촉매로 사용하여 부탄과 1-부텐으로부터 방향족 화합물로의 전환반응을 수행하였다. 방향족 탄화수소의 수율은 HZSM-5 내에 Ag 이온을 도입함으로써 현저하게 증가하였다 Ag 이온들은 출발원료인 탄화수소의 탈수소 촉매로서 작용하였다. 부탄과 1-부텐의 탈수소 과정에서 생성된 수소는 $Ag^+$ 이온을 Ag 금속으로 환원시킴과 동시에 산점의 형성을 유발하였다. Ag의 담지량이 다른 ZSM-5를 촉매로 사용하여 1-부텐의 전환반응을 수행하고, 이들 촉매의 산점특성 변화에 따른 효과를 검토하였다.

  • PDF