• Title/Summary/Keyword: acid-thermal stabilities

Search Result 25, Processing Time 0.028 seconds

Influence of some Natural Antioxidants Effect on Thermal Oxidation in Palm Oil (몇가지 천연 산화방지물의 첨가가 가열 팜유에 미치는 영향)

  • Chang, Young-Sang;Yi, Young-Soo;Kang, Woo-Suk;Shin, Zae-Ik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.9-14
    • /
    • 1989
  • Effectiveness of some natural antioxidants were investigated by measuring the physico-chemical charcteristics and fatty acid composition during thermal oxidation in palm oil. Tocopherol showed most enhanced thermal oxidation stabilities compared to the other natural antioxidants. AR spice was no good AOM stability and changes of acid value but the other parameters were obtained desirable results. The changes of linoleic aicd content was slightly decreased during thermal oxidation. Addition of rosemary and glycyrriza extract increased the stabilities of oil less than tocopherol and AR spice. Order of antioxdative effects was tocopherol, AR spice and others. There was no significiant difference in stability of rosemary and glycyrriza extract.

Thermal Stability of Representative Bioactive Compounds in Biopesticide Derived from Castor Oil or Wormseed Extract under Controlled Temperature (피마자유와 양명아주 추출물을 원료로 하는 유기농업자재 유효성분의 열 안정성 평가)

  • Choi, Geun-Hyoung;Jeong, Dong-Kyu;Jin, Cho-Long;Rho, Jin-Ho;Park, Byung-Jun;Moon, Byung-Cheol;Kim, Jin-Hyo
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.1
    • /
    • pp.17-21
    • /
    • 2017
  • BACKGROUND: Castor oil and wormseed extract are important active ingredients for biopesticide, and ricinoleic acid in castor oil and three monoterpenes (ascaridole, carvacrol and p-cymene) in wormseed extract are known bioactive substances. However, their stabilities had not been studied, even though the stability was the core property for estimation of shelf-life of biopesticide. Aimed to investigate the thermal stabilities of the bioactive substances in castor oil and wormseed extracts. METHODS AND RESULTS: The contents of ricinoleic acid and three monoterpenes (ascaridole, carvacrol and p-cymene) were analyzed by gas chromatography (GC). The thermal stabilities of the bioactive substance were measured at $0^{\circ}C$, $23^{\circ}C$, $30^{\circ}C$, $40^{\circ}C$, $45^{\circ}C$ and $54^{\circ}C$ for 84 d. The half-lives of ricinoleic acid in biopesticides was ranged from 28.9 d to 57.8 d at $30^{\circ}C$, and the stability of pure castor oil were located in the range ($t_{1/2}$=46.2d for Indian product and 27.7 d for Korean product) at the same temperature. The half-lives of the total monoterpenes in biopesticides were ranged from 3.9 d to 27.7 d at $30^{\circ}C$. Among the monoterpenes, the stability ascaridole and p-cymene were decreased in acidic condition. All the bioactive substances showed similar stability on the different thermal conditions. CONCLUSION:The half-lives of most bioactive substance from castor oil and wormseed extracts were less than 100 d. To increase the stability of bioactive substance in biopesticide, stabilizing additives like antioxidant and oxygen remover should be considered to extend of the shelf-life.

Stabilization and thermal conductivity measurement of MWCNT nanofluids by using the $3-{\omega}$ method (3-${\omega}$ 방법을 이용한 다중벽 탄소나노튜브 나노유체의 침전 안정성 및 열전도계수 측정에 관한 실험적 연구)

  • Oh, Dong-Wook;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2171-2176
    • /
    • 2007
  • The 3-omega (3-${\omega}$) method is utilized to measure the thermal conductivity of nanofluids. A metal line heater on a silicon nitride membrane bridge structure is microfabricated by a bulk silicon etching method. Localized measurement of the thermal conductivity within the nanofluids droplet is possible by the fabricated 3-${\omega}$ sensor. Time varying AC temperature amplitudes and thermal conductivities are measured to check the stability of the nanofluids containing multi-wall carbon nanotubes (MWCNTs). Stabilities of MWCNT nanofluids prepared with different chemical treatments are compared. Acid treated MWCNT showed best dispersion stability in water while MWCNTs dispersed in water with surfactants such as Gum Arabic and Sodium dodecyl benzene sulfate showed clear sign of gravity dependence.

  • PDF

Novel Properties for Endoglucanase Acquired by Cell-Surface Display Technique

  • Shi, Baosheng;Ke, Xiaojing;Yu, Hongwei;Xie, Jing;Jia, Yingmin;Guo, Runfang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1856-1862
    • /
    • 2015
  • In order to improve the stability of endoglucanase under thermal and acidic conditions, the endoglucanase gene was fused to the N-terminus of the Saccharomyces cerevisiae pir gene, encoding the cell wall protein PIR. The fusion gene was transformed into Pichia pastoris GS115 for expression. A resulting strain with high expression and high activity was identified by examining resistance to Geneticin 418, Congo red staining, and quantitative analysis of enzyme activity. SDS-PAGE analysis revealed that the endoglucanase was successfully displayed on the yeast cell surface. The displayed endoglucanase (DEG) showed maximum activity towards sodium carboxyl methyl cellulose at approximately 275 IU/g cell dry weight. DEG exhibited greater than 60% residual activity in the pH range 2.5-8.5, higher than free endoglucanase (FEG), which had 40% residual activity at the same pH range. The highest tolerated temperature for DEG was 70℃, much higher than that of FEG, which was approximately 50℃. Moreover, DEG showed 91.1% activity at 65℃ for 120 min, while FEG only kept 77.8% residual activity over the same period. The half-life of DEG was 270 min at 65℃, compared with only 150 min for FEG. DEG could be used repeatedly at least three times. These results suggest that the DEG has broad applications as a yeast whole-cell biocatalyst, due to its novel properties of high catalytic efficiency, acid-thermal stabilities, and reusability.

Evaluation of Deodorization Capabilities, Morphologies, and Thermal Stabilities of Baking Soda, Charcoal, Coffee, and Green Tea for Kimchi Packaging Application

  • Jeong, Suyeon;Yoo, Seung Ran
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • We evaluated the applicability of baking soda, charco'al, coffee, and green tea as a natural deodorant in Kimchi packaging. Moreover, to evaluate the potential usage of these deodorants in packaging materials and confirm their applicability in high-temperature melt-extrusion processing, the thermal stabilities of the deodorants were investigated, and heat-treated deodorants were evaluated in terms of the deodorizing function compared with non-treated deodorants. Aroma patterns were decreased after deodorizing treatment with all-natural deodorants. Dimethyl disulfide, methyl trisulfide, and diallyl disulfide, the most significant odorous Volatile organic compounds (VOCs) of Kimchi, decreased after treatment with the deodorants. In particular, baking soda and charcoal showed the highest efficiency in removing odorous compounds and VOCs from Kimchi, even after high-temperature processing. The acetic acid removal rates for both baking soda and charcoal were 99.9±0.0%. The heating process increases the deodorizing effects of baking soda. Sensory evaluation results showed that there is a significant increase (p < 0.05) in the overall preference for Kimchi samples packaged with charcoal and baking soda. This study provides useful information for the deodorization effects of natural deodorants for Kimchi smell and their applicability for packaging materials.

Influence of SiC on Thermal Stabilities and Mechanical Interfacial Properties of Carbon Fibers-reinforced Composites (탄화규소의 첨가가 탄소섬유 강화 복합재료의 열안정성 및 기계적 계면특성에 미치는 영향)

  • Oh Jin-Seok;Park Soo-Jin;Lee Jae-Rock;Kim Yeung-Keun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.182-185
    • /
    • 2004
  • In this work, the effect of chemical treatments on surface properties of SiC was investigated in mechanical interfacial properties of carbon fibers-reinforced composites. The surface properties of the SiC were determined by acid/base values and contact angles. The thermal stabilities of carbon fibers-reinforced composites were investigated by thermogravimetric analysis (TGA). Also, the mechanical interfacial properties of the composites were studied in interlaminar shear strength (ILSS) and critical strain energy release rate mode II $(G_{IIC})$ measurements. As a result, tile acidically treated SiC (A-SiC) had higher acid value than that of untreated SiC (V-SiC) or basically treated SiC (B-SiC). According to the contact angle measurements, it was observed that chemical treatments led to an increase of surface free energy of the SiC surfaces, mainly due to the increase of the specific (polar) component. The mechanical interfacial properties of the composites, including ILSS and $(G_{IIC})$, had been improved in the specimens treated by chemical solutions. These results were explained that good wetting played an important role in improving the degree of adhesion at interfaces between SiC and epoxy resin matrix.

  • PDF

Effects of Biphenylene Structure on the Properties of Liquid Crystalline Polymer (비페닐렌구조가 액정중합체의 성질에 미치는 영향)

  • Yug, Gyeong-Chang;Shin, Dae-Yewn;Shin, Hong-Chul;Kim, Wan-Young
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.280-287
    • /
    • 1992
  • Aromatic liquid crystalline polyesters were synthesized from terephthalic acid(TPA), biphenyl dicarboxylic acid(BPA) and hydroquinone(HQ) by solution polymerization. Effects of TPA/BPA ratio(by mole %) on the thermal properties, thermal stability and textures of mesophases were investigated with DSC, TGA, cross-polarized microscopy and X-ray diffractometer. The synthesized polymers in this study were thermotropic and showed nematic textures. Melting temperature($T_m$) and isotropization temperature($T_i$) of polymer increased and thermal stabilities of polymer were improved with the content of BPA. Most of the polymers in this study had crystallinity more than 30%.

  • PDF

Effect of Antioxidants on the Preparation of $^{99m}Tc-MDP$ ($^{99m}Tc-MDP$ 제조시 산화방지제 첨가영향)

  • Awh, Ok-Doo;Park, Kyung-Bae;Kim, Jae-Rok
    • The Korean Journal of Nuclear Medicine
    • /
    • v.26 no.1
    • /
    • pp.133-139
    • /
    • 1992
  • To improve the quality of $^{99m}Tc-methylenediphonate$ $(^{99m}Tc-MDP)$ for skeletal imaging, different composed $^{99m}Tc-MDP$ complexes were prepared with addition of antioxidants such as ascorbic acid, getisic acid, and p-aminobenzoic acid. To characterize the different $^{99m}Tc-MDP$ preparations, some physical and biochemical properties of $^{99m}Tc-MDP$ such as thermal stability, lipophilicity and bindability to serum protein were studied and organ distribution pattern of these complexes also compared. The thermal stabilities of $^{99m}Tc-MDP$ contained antioxidants were dependant mainly on pH, temperature, and elapsed time after the preparation. $^{99m}Tc-MDP$ complex contained gentisic acid as antioxidant was extremely unstable at alkaline condition. The most stable $^{99m}Tc-MDP$ was found in the presence of p-aminobenzoic acid. $^{99m}Tc-MDP$ complexes with antioxidants were very lipophilic but lipophilicity differences in antioxidants were not observed. The bindability of $^{99m}Tc-MDP$ to serum protein was not affect at pH $5.0\sim9.0$ by the different antioxidants. However, protein binding percentage of $^{99m}Tc-MDP$ with ascorbic acid was relatively low (22.7%) at pH 9.0. In biodistribution studies in mice, bone to muscle ratios of $^{99m}Tc-MDP$ preparations containing ascorbic acid, gentisic acid, and p-aminobenzoic acid were 15.3, 24.5, and 30.1, respectively. Im to our results, p-aminobenzoic acid is fond to be the most promising antioxidant.

  • PDF

Preparation of Waterborne Polyurethane Dispersion Based on Siloxane Polyal (실록산 폴리올의 도입에 따른 수분산성 폴리우레탄의 제조)

  • Yoo, Su-Yong;Kim, Jung-Du;Kam, Sang-Kyu;Moon, Myung-Jun;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.16 no.8
    • /
    • pp.891-896
    • /
    • 2007
  • Waterborne polyurethane dispersions (WPUD) were prepared by poly(ethylene glycol) adipate as the polyester type, ${\alpha},{\omega}-hydroxyalkyl$ terminated polydimethylsiloxane (PDMS-diol) as the polysiloxane type, hexamethylene diisocyanate, and isophorone diisocyanate, dimethylol propionic acid. The effects of PDMS-diol contents on the particle size, thermal and surface properties of WPUD were investigated. The structures of the synthesized WPUD were confirmed using by FT-IR. The surface, thermal and mechanical properties were investigated by measuring the contact angles, DSC, TGA and UTM. As PDMS-diol contents increased, the particle size, the contact angle, and the elongation was increased, while the tensile strength was decreased. Also the thermal stabilities of the synthesised WPUD were increased as PDMS-diol contents increased.

Different Dimensional and Structural Variations in Coordination Compounds of Cadmium, Manganese and Nickel Constructed from the Ligand 2,2'-Bipyidine-3,3',6,6'-tetracarboxylic Acid (H4bptc)

  • Xiang, Jing;Yang, Tian-Tian;Fu, Lu-Lu;Luo, Ya;Wu, Jia-Shou
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2597-2603
    • /
    • 2013
  • The reactions of hydrated $CdCl_2$, $MnCl_2$, and $NiCl_2$ with 2,2'-bipyidine-3,3',6,6'-tetracarboxylic acid ($H_4bptc$) afforded the mononuclear [$Cd^{II}(H_2bptc)(H_2O)_3]{\cdot}H_2O$ (1), linear $\{[Cd(H_2bptc)(H_2O)]{\cdot}3H_2O\}_n$ (2), 3-D heterobimetallic $[NaCd(Hbptc)(H_2O)]$ (3), layer $[Mn(H_2bptc)(H_2O)]_n$ (4) and a dinuclear compound $[Ni_2(H_2bptc)-(H_2O)_2]{\cdot}6H_2O$ (5). These compounds have been characterized by elemental analysis, IR, and their structures have been determined by X-ray crystallography. The thermal stabilities of 1-3 were measured by thermogravimetric analysis (TGA) and their solid state luminescence properties together with the free ligand $H_4bptc$ were investigated at room temperature.