• Title/Summary/Keyword: acid saccharification

Search Result 116, Processing Time 0.027 seconds

Ethanol Production from the Seaweed Gelidium amansii, Using Specific Sugar Acclimated Yeasts

  • Cho, Hyeyoung;Ra, Chae-Hun;Kim, Sung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.264-269
    • /
    • 2014
  • For the production of ethanol from seaweed as the source material, thermal acid hydrolysis and enzymatic saccharification were carried out for monosugars production of 25.5 g/l galactose and 7.6 g/l glucose using Gelidium amansii. The fermentation was performed with Pichia stipitis KCTC 7228 or Saccharomyces cerevisiae KCCM 1129. When wild P. stipitis and S. cerevisiae were used, the ethanol productions of 11.2 g/l and 6.9 g/l were produced, respectively. The ethanol productions of 16.6 g/l and 14.6 g/l were produced using P. stipitis and S. cerevisiae acclimated to high concentration of galactose, respectively. The yields of ethanol fermentation increased to 0.5 and 0.44 from 0.34 and 0.21 using acclimated P. stipitis and S. cerevisiae, respectively. Therefore, acclimation of yeasts to a specific sugar such as galactose reduced the glucose-induced repression on the transport of galactose.

Ethanol Production by Separate Hydrolysis and Fermentation and Simultaneous Saccharification and Fermentation Using Saccharina japonica (Saccharina japonica를 이용한 전처리 및 분리당화발효와 동시당화발효로부터 에탄올 생산)

  • Kim, Min-Ji;Kim, Sung-Koo
    • KSBB Journal
    • /
    • v.27 no.2
    • /
    • pp.86-90
    • /
    • 2012
  • Ethanol fermentations were carried out using simultaneous saccharification and fermentation (SSF) and separated hydrolysis and fermentation (SHF) processes with monosaccharides from seaweed, Saccharina japonica (sea tangle, Dasima) as the biomass. The pretreatment was carried out by thermal acid hydrolysis with $H_2SO_4$ or HCl. Optimal pretreatment condition was determined at 10% (w/v) seaweed slurry with 37.5 mM $H_2SO_4$ at $121^{\circ}C$ for 60 min. To increase the yield of saccharfication, isolated marine bacteria Bacillus sp. JS-1 was used and 48 g/L of reducing sugar were produced. Ethanol fermentation was performed using SSF and SHF process with Pachysolen tannophilus KCTC 7937. The ethanol concentration was 6.5 g/L by SSF and 6.0 g/L by SHF.

Thermal Acid Hydrolysis Pretreatment, Enzymatic Saccharification and Ethanol Fermentation from Red Seaweed, Gracilaria verrucosa (꼬시래기 홍조류로부터 열산가수분해, 효소당화 및 에탄올 발효)

  • Ra, Chae Hun;Choi, Jin Gyu;Kang, Chang-Han;Sunwoo, In Yung;Jeong, Gwi-Taek;Kim, Sung-Koo
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • The seaweed, Gracilaria verrucosa, was fermented to produce bioethanol. Optimal pretreatment conditions were determined to be 12% (w/v) seaweed slurry and 270 mM sulfuric acid at 121℃ for 60 min. After thermal acid hydrolysis, enzymatic saccharification was carried out with 16 U/ml of mixed enzymes using Viscozyme L and Celluclast 1.5 L to G. verrucosa hydrolysates. A total monosaccharide concentration of 50.4 g/l, representing 84.2% conversion of 60 g/l total carbohydrate from 120 g dw/l G. verrucosa slurry was obtained by thermal acid hydrolysis and enzymatic saccharification. G. verrucosa hydrolysate was used as the substrate for ethanol production by separate hydrolysis and fermentation (SHF). Ethanol production by Candida lusitaniae ATCC 42720 acclimated to high-galactose concentrations was 22.0 g/l with ethanol yield (YEtOH) of 0.43. Acclimated yeast to high concentrations of specific sugar could utilize mixed sugars, resulting in higher ethanol yields in the seaweed hydrolysates medium.

Fungal Fermentation of Lignocellulosic Biomass for Itaconic and Fumaric Acid Production

  • Jimenez-Quero, A.;Pollet, E.;Zhao, M.;Marchioni, E.;Averous, L.;Phalip, V.
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • The production of high-value chemicals from natural resources as an alternative for petroleum-based products is currently expanding in parallel with biorefinery. The use of lignocellulosic biomass as raw material is promising to achieve economic and environmental sustainability. Filamentous fungi, particularly Aspergillus species, are already used industrially to produce organic acid as well as many enzymes. The production of lignocellulose-degrading enzymes opens the possibility for direct fungal fermentation towards organic acids such as itaconic acid (IA) and fumaric acid (FA). These acids have wide-range applications and potentially addressable markets as platform chemicals. However, current technologies for the production of these compounds are mostly based on submerged fermentation. This work showed the capacity of two Aspergillus species (A. terreus and A. oryzae) to yield both acids by solid-state fermentation and simultaneous saccharification and fermentation. FA was optimally produced at by A. oryzae in simultaneous saccharification and fermentation (0.54 mg/g wheat bran). The yield of 0.11 mg IA/g biomass by A. oryzae is the highest reported in the literature for simultaneous solid-state fermentation without sugar supplements.

Enhancement of Ethanol Production via Hyper Thermal Acid Hydrolysis and Co-Fermentation Using Waste Seaweed from Gwangalli Beach, Busan, Korea

  • Sunwoo, In Yung;Nguyen, Trung Hau;Sukwong, Pailin;Jeong, Gwi-Teak;Kim, Sung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.401-408
    • /
    • 2018
  • The waste seaweed from Gwangalli beach, Busan, Korea was utilized as biomass for ethanol production. Sagassum fulvellum (brown seaweed, Mojaban in Korean name) comprised 72% of the biomass. The optimal hyper thermal acid hydrolysis conditions were obtained as 8% slurry contents, 138 mM sulfuric acid, and $160^{\circ}C$ of treatment temperature for 10 min with a low content of inhibitory compounds. To obtain more monosaccharides, enzymatic saccharification was carried out with Viscozyme L for 48 h. After pretreatment, 34 g/l of monosaccharides were obtained. Pichia stipitis and Pichia angophorae were selected as optimal co-fermentation yeasts to convert all of the monosaccharides in the hydrolysate to ethanol. Co-fermentation was carried out with various inoculum ratios of P. stipitis and P. angophorae. The maximum ethanol concentration of 16.0 g/l was produced using P. stipitis and P. angophorae in a 3:1 inoculum ratio, with an ethanol yield of 0.47 in 72 h. Ethanol fermentation using yeast co-culture may offer an efficient disposal method for waste seaweed while enhancing the utilization of monosaccharides and production of ethanol.

Lactic Acid Fermentation of Rice and Quality Improvement by Amylolytic Enzyme Treatment during Fermentation (쌀의 젖산발효 및 발효중 전분가수분해효소 처리에 의한 품질 향상)

  • Mok, Chul-Kyoon;Han, Jin-Suk;Kim, Young-Jin;Kim, Nam-Soo;Kwon, Dae-Young;Nam, Young-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.739-744
    • /
    • 1991
  • A palatable paste-type lactic fermented rice (LFR) was prepared by lactic acid fermentation after liquefaction and saccharification of cooked rice. A mixed culture of Lactobacillus bulgaricus and Streptococcus thermophilus (1 : 1) produced the LFR of the best quality. A great improvement in quality of the LFR was achieved by 0.02% each ${\alpha}-amylase$ and glucoamylase treatment during the fermentation (simultaneous saccharification and fermentation), which resulted from the increased sourness and sweetness and the decreased size of solid particles contained in the LFR. The resulted LFR was superior in quality. Physical and chemical properties of the LFR were evaluated.

  • PDF

Optimal Condition for Simultaneous Saccharification and Fermentation Using Pretreated Corncob by Oxalic Acid (옥살산 전처리 옥수숫대를 이용한 동시당화발효 최적 조건 탐색)

  • Seo, Young-Jun;Lim, Woo-Seok;Lee, Jae-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.490-497
    • /
    • 2011
  • In this study, we determined optimal conditions for simultaneous saccharification and fermentation (SSF) using corncob biomass pretreated with oxalic acid. The effect of SSF temperature ($25.8{\sim}34.2^{\circ}C$) and agitation speed (80~220 rpm) were significant at a 99% confidence level in its effect on ethanol production. The highest ethanol production was expected when SSF was performed at $30^{\circ}C$, 170 rpm (22.5 g/L). The ethanol production was improved by mixture of yeast extract (1.25 g/L) and urea (1.25 g/L) as nitrogen source. However, addition of trace metal components and vitamin for SSF was not affected in the ethanol production. Optimal concentration of $KH_2PO_4$, $MgSO_4{\cdot}7H_2O$ for SSF was 1 g/L, 0.25 g/L respectively.

Physicochemical characteristics of beer with rice nuruk

  • Kang, Sun-a;Kwon, Ye-seul;Jeong, Seok-tae;Choi, Han-seok;Im, Bo-ra;Yeo, Su-hwan;Kang, Ji-eun
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.3
    • /
    • pp.229-234
    • /
    • 2020
  • Beer production with rice or other malt substitutes suffers from a lack of suitable enzymes for saccharification. For this reason, rice nuruk (fermentation starter) was tested as a starch replacement for malt in the saccharification process of beer production. The results of this study show that the enzyme activities of rice nuruk made with brewing fungi were higher than those of malt. Saccharification and glucoamylase activities were high in Aspergillus awamori KCCM 30790 and α-amylase activity was high in Aspergillus oryzae CF1003. Overall, malt beer had significantly higher alcohol, pH, total acid, volatile acids, amino acids, free amino nitrogen, bitterness unit and ΔE than rice nuruk beer. Where as Aspergillus awamori KCCM 30790 beer had significantly higher soluble solids, reducing sugar than malt beer. According to a sensory evaluation, malt beer was better color, flavor and Aspergillus oryzae CF1003 beer was better taste, texture, overall acceptability than other beer. Therefore Aspergillus awamori KCCM 30790 beer was suitable considering enzyme activities (saccharification, glucoalmylase) and physicochemical characteristics (soluble solids, reducing sugar). And then Aspergillus oryzae CF1003 beer was suitable considering sensory evaluation (taste, texture, overall acceptability). Therefore rice nuruk like Aspergillus awamori KCCM 30790 and Aspergillus oryzae CF1003 were suitable as a substitute material that can replace for malt in beer proceccing.

Evaluation of Pitch Pine for Bioethanol Production by Organosolv Pretreatment (Organosolv 전처리를 통한 리기다소나무의 바이오에탄올 생산 적용성 평가)

  • Youe, Won-Jae;Kim, Yong Sik;Kang, Kyu-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.21-29
    • /
    • 2015
  • In this study, the feasibility of utilizing wood chips from pitch pine (Pinus rigida) was evaluated for bioethanol production by an organosolv pretreatment and enzymatic saccharification. When wood chips from pitch wood were pretreated with 75% (v/v) ethanol and 1.7% sulfuric acid as a catalyst at H-factor 2000, average pulp yield was 43.3%, which pretreated wood fibers showed higher glucan (55.8%) and lower lignin (12.2%) contents than untreated control (43.9% glucan and 27.8% lignin). After enzymatic saccharification, the organosolv pulps with 56.2% delignification rate reached above 97% conversion rate of cellulose to glucose. These results indicated that increasing the delignification rate causes micro pores on the surface of organosolv pulps resulting in improved the accessibility of enzyme onto the substrate. Moreover, it was in agreement with the SEM examination of wood fibers.