• Title/Summary/Keyword: acid gas

Search Result 2,071, Processing Time 0.031 seconds

Study on the Effect of Phenol Compound-Cold Therapy plus Exercise Therapy on the Muscle Pain Induced by Carrageenan (페놀 화합물 냉치료와 운동요법의 병행적용이 Carrageenan에 의하여 유발된 근육 통증에 미치는 영향에 관한 연구)

  • Kim, Myoung-Seoup
    • PNF and Movement
    • /
    • v.7 no.3
    • /
    • pp.29-38
    • /
    • 2009
  • Purpose : The aim of this study is to examine the effect of the phenol compound-cold therapy plus exercise therapy on the carrageenan(CAR)-induced muscle pain. Method : Mice were injected 0.1ml of 2% CAR into the gastrocmemius(GAS) muscle for the induction of muscle pain. After 4 hours from the injection of CAR, the cold therapy with 1% syringic acid was done to GAS muscle. After 2 hours from cold therapy, the exercise therapy such as muscle stretching, climing- and declining-movements was performed three times interval of 10 minutes in each experimental group. After 4, 10 and 24 hours from CAR-induced muscle pain, the measurements of muscle diameter, paw withdrawal latency(PWL) and, tail flick latency(TFL) were carried out. Results : In this study, the thickness of GAS muscle in CAR-induced muscle pain significantly increased compared with control. While, the thickness of GAS muscle adopted cold syringic acid-therapy with exercise-therapy group was significantly decreased than that of CAR-induced muscle pain. In the measurements of PWL and TFL, cold syringic acid-therapy with exercise-therapy group was remarkably increased than CAR-induced muscle pain group in PWL and TFL. All measurements were showed significantly different between the treated-group and the treated-time. Conclusions : From these results, it is suggested that the cold syringic acid-therapy with exercise-therapy such as muscle stretching, climing- and declining-movement was effective in the prevention of CAR-induced muscle pain by the decrease of muscle thickness and the increase of PWL and TFL.

  • PDF

Effects of Bamboo Powder Supplementation on Growth Performance, Blood Metabolites and Carcass Characteristics of Fattening Pigs and Gas Emission and Microbial Populations in Pig Manure (대나무 분말 첨가가 돼지생산성, 도체특성, 혈액성상, 돈분의 가스발생량 및 미생균 균총에 미치는 영향)

  • Song, Young-Min;Cho, Jae-Hyeon;Chu, Gyo-Moon;Kim, Hoi-Yun;Lee, Jae-Young;Kim, Seung-Cheol;Kim, Sam-Churl
    • Journal of Environmental Science International
    • /
    • v.23 no.8
    • /
    • pp.1429-1436
    • /
    • 2014
  • In this study, we investigated the effects of dietary supplementation (n = 40 pigs/treatment) with bamboo powder (0, 1, 2 and 3%) for 38 days. We evaluated growth performance, blood metabolites, and carcass characteristics of fattening pigs and gas emission and microbial populations in pig manure, to obtain data on pork producers for environmental management. We obtained the following results. First, supplementation with increasing amounts of bamboo powder had a significant (P < 0.05) effect on feed intake, feed efficiency, and glucose contents (except for initial and final body weight, weight gain, carcass characteristics, and blood urea nitrogen). In terms of blood metabolites, glucose and blood urea nitrogen tended to decrease with increasing amounts of bamboo powder. Second, the amounts of ammonia, methane, amine, hydrogen sulfide, and acetic acid were reduced by increasing amounts of bamboo powder when compared with the controls (P < 0.05). However, there were no significant differences in pH, propionic acid, iso-butyric acid, butyric acid, iso-valeric acid, and valeric acid among all treatments. The lowest gas emission was observed when 3% bamboo powder was used. Third, supplementation with increasing amounts of bamboo powder tended (P < 0.05) to increase the total number of bacteria, Lactobacillus spp., and yeast, but E. coli, Salmonella spp., and Shigella spp. were not detected in any treatment. In conclusion, the results of this study suggest that supplementation with bamboo powder was effective in reducing gas emission and inhibiting pathogen populations in pig manure by lowering the pH of the manure.

Synthesis of Aminated Poly(ether sulfone) as Anion Exchanger and its NO Gas Adsorption (Aminated Poly(ether sulfone)의 합성과 NO 가스의 흡착특성)

  • Son, W.K.;Park, S.G.
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.857-862
    • /
    • 1999
  • Aminated poly(ether sulfone)(APES) was prepared by amination of nitrated poly(ether sulfone)(NPES) after poly(ether sulfone)(PES) was nitrated with mixed acid of nitric acid and sulfuric acid(sulfuric acid is a catalyst). As a results of the FT-IR spectrum analysis, the nitration of PES was confirmed by the bands of asymmetric stretching and symmetric stretching of $NO_2$ group at 1537 and $1351cm^{-1}$, respectively. Also when the NPES was aminated, it was disappeared to absorbance peaks of $NO_2$ group. And It was confirmed by the bands of asymmetric stretching and symmetric stretching of $NH_2$ group at 3470 and $3374cm^{-1}$, respectively. The optimum condition of the nitration on PES(5 g; 21.55 mmol.) was 12 hr of reaction time, $120^{\circ}C$ of reaction temperature, nitric acid of 28.00 mmol. and sulfuric acid of 52.00 mmol. As a result of the elemental analysis of APES, reapeating unit per amine groups were induced to 0.89. The adsorption rate of NO gas was lower than that of silica gel and active carbon. But the adsorption capacity of NO gas was higher than that of these. When the APES was absorbed to NO gas, the chemical adsorption rate was lower than the physical adsorption rate. But the chemical adsorption capacity of it was higher than physical adsorption capacity.

  • PDF

Alcohol Fermentation of Cheese Whey by Kluyveromyces marxianus and Lactic Acid Bacteria (Kluyveromyces marxianus와 젖산균의 혼합배양에 의한 치즈 유청의 알코올 발효)

  • Shim, Young-Sup;Kim, Jae-Won;Yoon, Sung-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.161-167
    • /
    • 1998
  • Whey is by-product from natural cheese manufacturing process. For alcoholic fermentation, the initial lactose content and pH were adjusted to 4.5% and 4.2, respectively. Two strains of yeasts (Kluyveromyces marxianus, Saccharomyces cerevisiae) and seven strains of lactic acid bacteria (Lactobacillus brevis, Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus lactis, Leuconostoc cremoris, Lactococcus lactis and Streptococcus thermophilus) were examined for their alcohol production and sensory acceptability. Ethanol content in the whey fermented by lactose-fermenting K. marxianus was 2.8% at 4th day of incubation and that fermented by nonlactose fermenting S. cerevisiae was 0.2%. In case of mixed fermentation with yeasts and tactic acid bacteria (LAB being inoculated at 0 hr), the maximum ethanol production was obtained in the sample inoculated at 16 hr by s. cerevisiae, and in the sample inoculated at 24 hr by K. marxianus. The optimum temperature was $37^{\circ}C$ for alcohol production under static condition. The production of $CO_2$ gas was higher in the whey fermented by K. marxianus (1.88%) than by S. cerevisiae (0.04%). The titratable acidity of the whey gradually increased with fermentation time and its content was 0.39% at 4th day of fermentation by K. marxianus and 0.52% by S. cerevisiae. Among seven strain of latic acid bacteria tested, Lactococcus lactis exerted synergistic effect for acid production with K. marxianus. Therefore, overall results suggestd that the combination of Lactococcus lactis and K. marxianus was best choice in fermenting cheese whey for edible purpose.

  • PDF

Precipitation of Manganese in the p-Xylene Oxidation with Oxygen-Enriched Gas in Liquid Phase

  • Jhung, Sung-Hwa;Park, Youn-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.369-373
    • /
    • 2002
  • The liquid phase oxidation of p-xylene has been carried out with oxygen-enriched gas, and the manganese component was precipitated probably via over-oxidation to $Mn^{4+}$. The precipitation increased with rising oxygen concentration in the reaction gas and occurred mainly in the later part of the oxidation. The activity of the reaction decreased, and the blackening of the product and side reactions to carbon dioxide increased with the degree of precipitation. Precipitation can be decreased with the addition of metal ions, such as cerium, chromium and iron.

Degradation of Toluene and Acetic Acid Using Cell-Free Enzyme System from Single Cell-Strain (Single cell-strain부터 유래된 무세포 효소 시스템을 이용한 톨루엔 및 아세트산 분해)

  • Jang, Jae Hyun;Kim, Yeji;Roh, Tae Yong;Park, Joong Kon
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.665-670
    • /
    • 2016
  • This study deals with the possible degradation of toluene and acetic acid when subjected to cell-free enzyme system from the toluene degrading bacteria Pseudomonas putida and acetic acid degrading bacteria Cupriavidus necator. P. putida produces toluene dioxygenase only under the existence of toluene in culture medium and toluene is degraded to cis-toluene dihydrodiol by this enzyme. C. necator produces acetyl coenzyme A synthetase-1 and converts acetic acid to acetyl CoA in order to synthesize ATP to need for growth or PHA which is biodegradable polymer. In case of toluene degradation, the experiment was conducted before and after production of toluene dioxygenase as this enzyme, produced by P. putida, is an inducible enzyme. Toluene was detected using gas chromatography (GC). Similar amount of toluene was found in control group and before production of toluene dioxygenase (experimental group 1). However, reduction in toluene was detected after the production of toluene dioxygenase (experimental group 2). Acetic acid was detected through application of gas chromatography-mass spectrometer (GC-MS). The results showed the acetic acid peak was not detected in the experimental group to apply cell-free enzyme system. These results show that the cell-free enzyme system obtained from P. putida and C. necator retained the ability to degrade toluene and acetic acid. However, P. putida needs to produce the inducible enzyme before preparation of the cell-free enzyme system.

Fatty Acid and Volatile Oil Compositions of Allomyrina dichotoma Larvae

  • Youn, Kumju;Kim, Ji-Young;Yeo, Hyelim;Yun, Eun-Young;Hwang, Jae-Sam;Jun, Mira
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.4
    • /
    • pp.310-314
    • /
    • 2012
  • Thirty-two different volatile oils were identified from Allomyrina dichotoma (A. dichotoma) larvae by gas chromatography/mass spectrometry (GC/MS). The major volatile components were 2,2,4-trimethyl-3-carboxyisopropyl pentanoic acid isobutyl ester (5.83%), phenol,2,6-bis(a,a-dimethyl ethyl)-4-(1-methyl-1-phenylethyl) (5.72%), heptacosane (5.49%) and phenol,2,4-bis(1-methyl-1-phenylethyl) (5.47%). The composition of the fatty acids in A. dichotoma larvae was also determined by gas chromatography (GC) and fourteen constituents were identified. Oleic acid (19.13%) was the most abundant fatty acid followed by palmitic acid (12.52%), palmitoleic acid (3.71%) and linoleic acid (2.08%) in 100 g of A. dichotoma larvae on a dry weight basis. The quantity of unsaturated fatty acids (64.00%) were higher than that of saturated ones (36.00%). The predominant fatty acids in A. dichotoma consist of monounsaturated fatty acid (MUFA, 57.70%) such as oleic acid, myristoleic acid and palmitoleic acid, followed by saturated fatty acids (36.00%) and polyunsaturated fatty acids (PUFA, 6.50%). In particular, the presence of essential fatty acids, such as linoleic (5.30%) and linolenic acid (0.40%) give A. dichotoma larvae considerable nutritional and functional value and it may be a useful source for food and/or industrial utilization.

Effects of Phenolic Compounds in Milled Barley Grains on the Growth of Saccharomyces cerevisiae (보리쌀중의 Phenol 화합물이 Saccharomyces cerevisiae의 생육에 미치는 영향)

  • 정기택;김욱한;송형익
    • Korean Journal of Microbiology
    • /
    • v.24 no.2
    • /
    • pp.168-174
    • /
    • 1986
  • The phenolic compounds contained in milled barley grains were seperated and identified by gas liquid chromatography and the effects of phenolic compounds extracted from milled barley grains and each authentic phenolic compound on the growth of Saccharomyces cerevisiae were studied. Severn phenolic acids, namely cinnamic, protocatechuic, ferulic, sinapid, vanillic, syringic, gallic acids, were identified in milled barley grains by gas liquid chromatography. The contents of sinapic, ferulic, cinnamic, protocatechuic acids were larger than those of vanillic and gallic acids. Phenolic compounds, extracted from milled barley grains and supplemented in culture broth, were inhibitory to the growth of Saccharomyces cerevisiae at levels above 100ppm to 24 hours but not inhibitory at all levels after 48 hours. Cinnamic, ferulic, vanillic acids at all levels were inhibitory to the growth of Saccharomyces cerevisiae, among them cinnamic acid was most inhibitory. Syringic acid was inhibitory to the growth of the yeast at the initial stage of culture. But sinapic and protocatechuic acids were slightly stimulatory to the growth of the yeast and gallic acid was ineffective to the growth of the yeast.

  • PDF

Characterization of Volatile Compounds in Low-Temperature and Long-Term Fermented Baechu Kimchi (묵은 배추김치의 휘발성 성분 특성)

  • Kim, Ji-Yun;Park, Eun-Young;Kim, Young-Suk
    • Journal of the Korean Society of Food Culture
    • /
    • v.21 no.3
    • /
    • pp.319-324
    • /
    • 2006
  • Volatile compounds in low-temperature and long-term fermented Baechu kimchi were extracted by high vacuum sublimation(HVS), and then analyzed by gas chromatography/mass spectrometry(GC-MS). A total of 62 compounds, including 7 sulfur-containing compounds, 8 terpenes, 5 esters, 8 acids, 15 alcohols, 2 nitrites, 2 ketones, 11 aliphatic hydrocarbons and 4 miscellaneous compounds, were found in low-temperature and long-term fermented Baechu kimchi. Among them, acetic acid and butanoic acid were quantitatively dominant. Aroma-active compounds were also determined by gas chromatography/olfactometry(GC-O) using aroma extract dilution analysis(AEDA). A total of 16 aroma-active compounds were detected by GC-O. Butanoic acid was the most potent aroma-active compound with the highest FD factor($Log_3FD$) followed by linalool, acetic acid, 2-vinyl-4H-1,3-dithin and 3-methyl-1-butanol. The major aroma-active compounds, such as acetic acid and butanoic acid, were related to sour and rancid or notes.

Direct Synthesis of Dimethyl Ether from Synthesis Gas (합성가스로부터 디메틸에테르 직접 합성)

  • Hahm, Hyun-Sik;Kim, Song-Hyoung;Kang, Young-Gu;Shin, Ki-Seok;Ahn, Sung-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.4
    • /
    • pp.8-14
    • /
    • 2009
  • Dimethyl ether(DME) was synthesized from synthesis gas by a one-step process in which a hybrid catalyst was used. The hybrid catalyst consisted of Cu-ZnO-$Al_2O_3$ for the methanol synthesis reaction and aluminum phosphate or $H_3PO_4$-modified $\gamma$-alumina for the methanol dehydration reaction. The prepared catalysts were characterized by XRD, BET, SEM, FT-IR and $NH_3$-TPD. From the XRD analysis, it was verified that the aluminum phosphate was successfully synthesized. The specific surface areas of the synthesized aluminum phosphates were varied with the ratio of P/Al. The hybrid catalyst in which P/Al ratio of the aluminum phosphate was 1.2 showed the highest CO conversion of 55% and DME selectivity of 70%. There was no remarkable decrease in catalytic activity with the phosphoric acid treatment of $\gamma$-alumina. However, when treated with concentrated phosphoric acid(85%), the catalytic activity and DME selectivity decreased.

  • PDF