• 제목/요약/키워드: acicular

검색결과 207건 처리시간 0.017초

전구체 공침 온도가 LiNi1/3Co1/3Mn1/3O2 분말의 특성에 미치는 영향 (Effects of Precursor Co-Precipitation Temperature on the Properties of LiNi1/3Co1/3Mn1/3O2 Powders)

  • 최웅희;강찬형
    • 한국분말재료학회지
    • /
    • 제23권4호
    • /
    • pp.287-296
    • /
    • 2016
  • $Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)_2$ powders have been synthesized in a continuously stirred tank reactor via a co-precipitation reaction between aqueous metal sulfates and NaOH using $NH_4OH$ as a chelating agent. The co-precipitation temperature is varied in the range of $30-80^{\circ}C$. Calcination of the prepared precursors with $Li_2CO_3$ for 8 h at $1000^{\circ}C$ in air results in Li $Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ powders. Two kinds of obtained powders have been characterized by X-ray diffraction (XRD), scanning electron microscopy, particle size analyzer, and tap density measurements. The co-precipitation temperature does not differentiate the XRD patterns of precursors as well as their final powders. Precursor powders are spherical and dense, consisting of numerous acicular or flaky primary particles. The precursors obtained at 70 and $80^{\circ}C$ possess bigger primary particles having more irregular shapes than those at lower temperatures. This is related to the lower tap density measured for the former. The final powders show a similar tendency in terms of primary particle shape and tap density. Electrochemical characterization shows that the initial charge/discharge capacities and cycle life of final powders from the precursors obtained at 70 and $80^{\circ}C$ are inferior to those at $50^{\circ}C$. It is concluded that the optimum co-precipitation temperature is around $50^{\circ}C$.

가압반응기를 이용한 배연탈황석고로부터 α형 반수석고의 생성 (Preparation of Calcium Sulfate α-Hemihydrate from FGD Gypum in the Autoclave)

  • 박승수;김기형;안희수;박광규
    • 공업화학
    • /
    • 제17권6호
    • /
    • pp.619-624
    • /
    • 2006
  • 유연탄을 연소하는 화력발전소의 탈황설비에서 생산된 배연탈황석고를 대상으로 가압반응기를 이용하여 수열반응을 통한 알파형 반수석고의 생성과정을 살펴보았다. 실험 결과 첨가제를 사용하지 않아도 반응온도 $120{\sim}140^{\circ}C$ 범위 하에서는 용해-재석출 기구에 의하여 알파형 반수석고가 생성되었으나 아스펙트 비가 매우 높은 침상형 결정이 생성되었다. 호박산나트륨을 첨가제로 주입한 결과 결정형상은 침상형에서 각주형으로 변화되었으며 혼수 비(water/powder ratio)는 33%까지 감소하였다. 호박산나트륨의 농도는 20 mM이 적정하였으며 반응도중 성형체의 붕괴를 방지하고 성형체의 기공부피에 의한 모세관 효과를 최대화하기 위한 최적의 성형체 성형압력은 $30kgf/cm^2$이었다.

해양플랜트용 500 MPa급 후판강의 모재 및 HAZ의 미세조직과 기계적 특성의 상관관계 (Correlation between Microstructure and Mechanical Properties of Base Metal and HAZ of 500 MPa Steel Plates for Offshore Platforms)

  • 박지원;조성규;조영욱;신건철;권용재;이정구;신상용
    • 한국재료학회지
    • /
    • 제30권3호
    • /
    • pp.123-130
    • /
    • 2020
  • In this study, two types of thick steel plates are prepared by controlling carbon equivalent and nickel content, and their microstructures are analyzed. Tensile tests, Vickers hardness tests, and Charpy impact tests are conducted to investigate the correlation between microstructure and mechanical properties of the steels. The H steel, which has high carbon equivalent and nickel content, has lower volume fraction of granular bainite (GB) and smaller GB packet size than those of L steel, which has low carbon equivalent and nickel content. However, the volume fraction of secondary phases is higher in the H steel than in the L steel. As a result, the strength of the L steel is higher than that of the H steel, while the Charpy absorbed energy at -40 ℃ is higher than that of the L steel. The heat affected zone (HAZ) simulated H-H specimen has higher volume fraction of acicular ferrite (AF) and lower volume fraction of GB than the HAZ simulated L-H specimen. In addition, the grain size of AF and the packet sizes of GB and BF are smaller in the H-H specimen than in the L-H specimen. For this reason, the Charpy absorbed energy at -20 ℃ is higher for the H-H specimen than for the L-H specimen.

열처리에 따른 Fe-6.5Mn-0.08C 중망간강의 미세조직과 기계적 특성 (Effect of Heat Treatment on Microstructure and Mechanical Properties of an Fe-6.5Mn-0.08C Medium-Manganese Steel)

  • 윤영철;이상인;황병철
    • 한국재료학회지
    • /
    • 제30권1호
    • /
    • pp.8-13
    • /
    • 2020
  • Effect of heat treatment on microstructure and mechanical properties of an Fe-6.5Mn-0.08C medium-manganese steel is investigated in this study. Three kinds of medium-manganese steel specimens are fabricated by varying heat treatments of intermediate quenching (IQ), step quenching (SQ), and intercritical annealing (IA). Hardness and tensile tests are performed to examine the correlation of microstructure and mechanical properties for the Fe-6.5Mn-0.08C medium-manganese steel specimens. The IQ and SQ specimens have microstructures of martensite matrix with ferrite, whereas IA specimen exhibits microstructure of acicular ferrite matrix with martensite. The tensile test results show that the SQ specimen with martensite matrix has the highest yield strength and the lowest elongation. On the other hand, the SQ specimen has the highest hardness due to the relatively lower reduction of carbon content in martensite during intercritical annealing. According to the fractography of tensile tested specimens, the SQ specimen exhibits a dimple and quasi-cleavage fracture appearance while the IQ and IA specimens have fully ductile fracture appearance with fine-sized dimples caused by microvoid coalescence at ferrite and martensite interface.

코발트 훼라이트 에피탁시얼 산화철의 생성과 자기특성(II) (Formation of Cobalt Ferrite Epitaxial Iron Oxide and Their Magnetic Properties(II))

  • 변태봉;김대영;이재영;이현;손진군;한기현
    • 한국자기학회지
    • /
    • 제2권1호
    • /
    • pp.15-21
    • /
    • 1992
  • 침상형의 ${\gamma}-Fe_{2}O_{3}$ 입자를 $Co^{+2}/Fe^{+2}$의 몰비가 0.5인 2가 금속혼합용액을 함유하는 알카리성 용액에서 $90^{\circ}C$로 가열하였다. 코발트 함량이 증가함에 따라 생성물의 보자력은 거의 직선적으로 증가하였으며 비표면적은 감소하였다. 코발트 훼라이트는 ${\gamma}-Fe_{2}O_{3}$ 결정 표면상에 에피탁시얼하게 성장되며, 보자력의 증가는 피착층인 코발트 훼라이 트의 결정 자기이방성에 기인하는 것으로 사료된다. 당량비 2이상에서 우수한 자기적 특성을 기대할 수 있 었으며 반응공정도 코발트 훼라이트 에피탁시얼 산화철의 보자력 특성에 영향을 미친다. $Co-{\gamma}-Fe_{2}O_{3}$의 온도 및 경시변화에 대한 안정성은 피착층 조성에 의해 크게 지배된다.

  • PDF

TMCP강의 용접 공정별 입열량에 따른 용접부 물성 평가 및 비교 (Evaluation and Comparison of Weldabilities with Various Welding Processes on TMCP Steels)

  • 최철영;지창욱;김형찬;남대근;김정돈;김순국;박영도
    • Journal of Welding and Joining
    • /
    • 제32권1호
    • /
    • pp.6-14
    • /
    • 2014
  • This paper has an aim to evaluate microstructure and fracture toughness of TMCP steel weldment applied for off-shore wind tower with the focus on the effect of heat input on the weldment with various welding processes; FCAW(13kJ/cm and 30kJ/cm), SAW(62kJ/cm), and EGW(177kJ/cm). Based on experimental results developed from this study, it was found that the impact toughness of top side for TMCP steel weldments with heat input up to 62 kJ/cm satisfied the required minimum value except the EGW(177kJ/cm). The heat input and microstructure are the main factors of impact toughness. The heat input of 13kJ/cm on back side with low heat input increased the amount of grain boundary ferrite which has low impact toughness, and heat input of 177kJ/cm on top side is significant enough to produce the austenite grain growth. The compositions and sizes of inclusions which are the dominant factors for the formation of acicular ferrite were analyzed by OM and EDS. As the heat input increased, the inclusions also grew and a nucleation site decreased. The size of nonmetallic inclusions and the crack width was nearly similar, therefore the inclusions were related with the crack propagation.

내부식용 API 5L X70 다전극 SAW 용접부의 내면 저온인성에 미치는 외면 입열의 영향 (Effect of Heat Input of Outside Weld on Low Temperature Toughness of Inside Weld for Multiple Electrode SA Welded API 5L X70 with Sour Gas Resistance)

  • 안현준;이희근;박용규;은성수;강정윤
    • Journal of Welding and Joining
    • /
    • 제32권1호
    • /
    • pp.93-101
    • /
    • 2014
  • This study aims to investigate the effect of heat input of outside SAW weld on low temperature toughness($-20^{\circ}C$) of inside SAW weld for API 5L X70 with sour gas resistance. As increasing heat input of the outside weld, low temperature toughness of the inside weld was decreased. Especially, in spite of the same heat input, the value of low temperature toughness was fluctuated. On the basis of fracture and microstructure analysis, the low temperature toughness is correlated with the fracture area ratio of shear lips and four kinds of fracture sections. These sections were divided with size and shape of dimple correlated with grain boundary ferrite and cleavage correlated acicular and polygonal ferrite in grain. Therefore, it was seen that these sections were two of final solidification area in the inside weld and the outside weld, no reheated zone and reheated zone in the inside weld. In conclusion, it is thought that the difference of low temperature toughness at the same heat input is due to the fact that each of impact test specimens could have the different microstructure, even though the notch was machined under the error tolerance of 1mm. It is because the final solidification area of the inside weld is very narrow.

산세폐액을 이용한 Maghemite의 제조 (Preparation and Maghemite Using Waste Pickling Acid)

  • 변태봉;이재영;김대영;손진군;권순주
    • 한국세라믹학회지
    • /
    • 제28권12호
    • /
    • pp.996-1004
    • /
    • 1991
  • In this study, we tried to synthesis iron hydroxide suitable for longitudinal magnetic recording media from waste acid, which is a by-product of an iron works factory. Effects of initial pH of reactants, reaction temperature, reaction time for the synthesis of acicular iron hydroxide were studied in relation to particle properties of iron hydroxide and magnetic properties of maghemite powders. As the pH in reactant solution increased, $\beta$-FeOOH(pH=4.5), mixture of $\beta$-FeOOH and $\alpha$-FeOOH(4.5$\alpha$-FeOOH and Fe3O4(6.4$\alpha$-FeOOH (pH>13) was found to from in order. Especially, $\alpha$-FeOOH formed above pH 13 was single phase with superior acicularity. The temperature range over which the single-phase goethite can be formed increased as the initial pH of reactants increased (pH 13:10~5$0^{\circ}C$, pH 13.2:10~7$0^{\circ}C$, pH 13.5:0~8$0^{\circ}C$). The goethite formed between 40~6$0^{\circ}C$ has superior characteristics because the acicularity increased with increasing temperature but at high temperature (>6$0^{\circ}C$) Fe3O4 (pH=13) was found to start to form. Generally, single phase of goethite was found to form after one hour when an optimized condition. The particle size of goethite did not change as the reaction time increased over one hour. Accordingly, the magnetic properties of ${\gamma}$-Fe2O3 produced from goethite were not altered.

  • PDF

전기방전소결에 의해 제조된 다공성 및 다공성 표면을 갖는 Ti-6Al-4V 임플란트 : (1) 제조방법 및 기본적 특성 (Fully Porous and Porous Surfaced Ti-6Al-4V Implants Fabricated by Electro-Discharge-Sintering: (1) Fabrication Method and Fundamental Characteristics)

  • 현창용;허재근;이원희
    • 한국분말재료학회지
    • /
    • 제12권5호
    • /
    • pp.325-331
    • /
    • 2005
  • Implant prototypes with various porosities were fabricated by electro-discharge-sintering of atomized spherical Ti-6Al-4V powders. Single pulse of 0.75 to 2.0 kJ/0.7 g-powder, using 150, 300, and $450{\mu}F$ capacitors was applied to produce a fully porous and porous surfaced implant compact. The solid core formed in the center of the compact after discharge was composed of acicular ${\alpha}+{\beta}$ grains and porous layer consisted of particles connected in three dimensions by necks. The solid core and neck sizes increased with an increase in input energy and capacitance. On the other hand, pore volume decreased with increased capacitance and input energy due to the formation of solid core. Capacitance and input energy are the only controllable discharge parameters even though the heat generated during a discharge is the unique parameter that determines the porosity of compact. It is known that electro-discharge-sintering of spherical Ti-6Al-4V powders can efficiently produce fully-porous and porous surfaced Ti-6Al-4V implants with various porosities in a short time less then 400 isec by manipulating the discharging condition such as input energy and capacitance including powder size.

HSB600강 GMA 용접부에서 입열량과 용접후 열처리가 미세조직과 기계적 특성에 미치는 영향 (The effect of Heat input and PWHT on the microstructure and mechanical properties of HSB600 steel weldments)

  • 고진현;김남훈;장복수;주동휘;임영민
    • 한국산학기술학회논문지
    • /
    • 제12권12호
    • /
    • pp.5405-5411
    • /
    • 2011
  • 본 연구에서는 교량용 구조용 강재인 HSB600 강의 용접부에서 입열량 (1.5~3.6 kJ/mm)과 용접후 열처리(PWHT, $600^{\circ}C$, 40hr.)가 미세조직과 기계적 특성에 미치는 영향에 관해 연구하였다. HSB600 강재를 GMA용접을 실시하였다. 용접된 상태에서는 인장강도와 경도는 입열량이 증가할수록 저하되었으며 충격 흡수 에너지는 큰 차이를 보이지 않았다. 낮은 입열량인 1.5 kJ/mm에서 침상형 페라이트가 가장 많이 생성되었다. 용접후 열처리를 통해 경도와 인장강도가 저하되었고, 용착금속의 충격흡수에너지가 증가되었다.