• Title/Summary/Keyword: achievable throughput

Search Result 33, Processing Time 0.016 seconds

Dynamic Channel Allocation in Closed-Access Small Cell Networks (폐쇄형 접속 방식의 소형셀 네트워크를 위한 동적 채널 할당 알고리즘)

  • Mun, Cheol;Jo, Han-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.1
    • /
    • pp.50-61
    • /
    • 2014
  • Operating small cell with existing macro cell is of interest in wireless communication technology to enhance network capacity. Closed-access small cell allows the access of users registered in it and causes severe interference to nearby users connected to macrocell. We propose a dynamic channel allocation for small cells in the same building that first aim to minimize call-drop of the nearby macrocell users, and then want to reduce interferences between the small cells. Since the interference effect of small cells on the nearby macrocell users mainly depends on the small cells' position, the proposed algorithm includes a self-configuration to flexibly allocate frequency channels according to the variation of downlink quality of the macrocell users. Furthermore the algorithm is very simple and practical, which is main contribution of this paper. We observe that the proposed algorithm provides 82-94% of maximum achievable throughput.

On the System Modeling and Capacity Scaling Law in Underwater Ad Hoc Networks (수중 애드 혹 네트워크에서의 시스템 모델링 및 용량 스케일링 법칙에 대하여)

  • Shin, Won-Yong;Kim, A-Jung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4B
    • /
    • pp.422-428
    • /
    • 2011
  • In this paper, we introduce system and channel modeling for an underwater ad hoc acoustic network with n regularly located nodes, and then analyze capacity scaling laws based on the model. A narrow-band model is assumed where the carrier frequency is allowed to scale as a function of n. In the network, we characterize in attenuation parameter that depends on the frequency scaling as well as the transmission distance. A cut-set upper bound on the throughput scaling is then derived in extended networks having unit node density. Our result indicates that the upper bound is inversely proportional to the attenuation parameter, thus resulting in a power-limited network. Furthermore, we describe an achievable scheme based on the simple nearest-neighbor multi-hop (MH) transmission. It is shown under extended networks that the MH scheme is order-optimal for all the operating regimes expressed as functions of the attenuation parameter.

An Adaptive Differential Equal Gain Transmission Technique using M-PSK Constellations (M-PSK 성운을 이용한 적응형 차분 동 이득 전송 기술)

  • Kim, Young-Ju;Seo, Chang-Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.21-28
    • /
    • 2016
  • We propose an adaptive scheme of a differential codebook for temporally correlated channels. And the codeword entries of the propose codebook are selected among the set of M-PSK constellations - the values of M proposed in this paper are 8, 16, or 32. Firstly, we analyze mathematically how the optimal spherical cap radius of the proposed codebook is tracked. Then, we explain the practical implementation of the proposed adaptive method. Practically, some candidate differential codebooks we propose in this paper can be switched according to the temporal correlation coefficients of wireless channels in the proposed scheme. Monte-Carlo simulations demonstrate that the achievable throughput performance employing the proposed codebook is always superior to those of the differential codebooks employing M-PSK constellations and non-adaptive differential codebooks with the same amount of feedback information.