• Title/Summary/Keyword: accuracy standard

Search Result 2,399, Processing Time 0.038 seconds

Assessment of RANS Models for 3-D Flow Analysis of SMART

  • Chun Kun Ho;Hwang Young Dong;Yoon Han Young;Kim Hee Chul;Zee Sung Quun
    • Nuclear Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.248-262
    • /
    • 2004
  • Turbulence models are separately assessed for a three dimensional thermal-hydraulic analysis of the integral reactor SMART. Seven models (mixing length, k-l, standard $k-{\epsilon},\;k-{\epsilon}-f{\mu},\;k-{\epsilon}-v2$, RRSM, and ERRSM) are investigated for flat plate channel flow, rotating channel flow, and square sectioned U-bend duct flow. The results of these models are compared to the DNS data and experiment data. The results are assessed in terms of many aspects such as economical efficiency, accuracy, theorization, and applicability. The standard $k-{\epsilon}$ model (high Reynolds model), the $k-{\epsilon}-v2$ model, and the ERRSM (low Reynolds models) are selected from the assessment results. The standard $k-{\epsilon}$ model using small grid numbers predicts the channel flow with higher accuracy in comparison with the other eddy viscosity models in the logarithmic layer. The elliptic-relaxation type models, $k-{\epsilon}-v2$, and ERRSM have the advantage of application to complex geometries and show good prediction for near wall flows.

Comparison of Methodologies for Typical Meteorological Data Generation for Seoul (서울지역의 표준기상데이터 산출방법론 비교)

  • Yoo, Ho-Chun;Park, So-Hee;Kim, Kyoung-Ryul
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.2
    • /
    • pp.10-18
    • /
    • 2008
  • This study aims to figure out typical meteorological data according to Korean time in order to evaluate building energy performance. Various methods of calculating typical meteorological data were compared and examined to improve accuracy and reliability of this study. This study analyzed and examined such methodologies as typical meteorological data for HASP/ACLD-8001, UK CIBSE TRY developed by CIBSE and prEN ISO 15927-4, (=ISO TRY) an international standard to evaluate annual energy demand of cooling and heating devices. In addition, actual data of KMA corresponding to Seoul in $1985{\sim}2005$ were statistically analyzed according to calculation methodology. The calculated typical meteorological data were compared te actual data using MBE, RMSE and t-Statistic. As a result, According to the comparison between average annual for HASP/ACLD-8001 and ISO TRY standard year, the average annual for HASP/ACLD-8001 is closer to actual measurement, showing that the use of typical meteorological data for HASP/ACLD-8001 is preferred. However, since the input format requested by current simulation is the same international standard as TRY. Therefore, it is necessary to improve accuracy of TRY calculation methodology and accordingly figure out Korean typical meteorological data based on average year.

Structural damage identification of truss structures using self-controlled multi-stage particle swarm optimization

  • Das, Subhajit;Dhang, Nirjhar
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.345-368
    • /
    • 2020
  • The present work proposes a self-controlled multi-stage optimization method for damage identification of structures utilizing standard particle swarm optimization (PSO) algorithm. Damage identification problem is formulated as an inverse optimization problem where damage severity in each element of the structure is considered as optimization variables. An efficient objective function is formed using the first few frequencies and mode shapes of the structure. This objective function is minimized by a self-controlled multi-stage strategy to identify and quantify the damage extent of the structural members. In the first stage, standard PSO is utilized to get an initial solution to the problem. Subsequently, the algorithm identifies the most damage-prone elements of the structure using an adaptable threshold value of damage severity. These identified elements are included in the search space of the standard PSO at the next stage. Thus, the algorithm reduces the dimension of the search space and subsequently increases the accuracy of damage prediction with a considerable reduction in computational cost. The efficiency of the proposed method is investigated and compared with available results through three numerical examples considering both with and without noise. The obtained results demonstrate the accuracy of the present method can accurately estimate the location and severity of multi-damage cases in the structural systems with less computational cost.

Establishment of HPLC-UV Analysis Method Validation for Simultaneous Analysis of Standard Compounds of Oplopanax elatus Nakai Stem (HPLC-UV를 이용한 땃두릅나무 줄기의 지표 성분 동시 분석법 확립)

  • Yoo, Nam Ho;Kwon, Yongsoo;Kim, Myong Jo
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.2
    • /
    • pp.133-140
    • /
    • 2019
  • In our previous study, we found uracil, adenosine, protocatechuic acid, syringin (eleutheroside B) and scoparone (6, 7-dimethoxycoumarin) in the Oplopanax elatus Nakai Stem. High-performance liquid chromatography (HPLC) -UV was used to quality and quantify the internal marker compounds in the O. elatus extract after validation of method with linearity, limit of detection (LOD), limit of quantitation (LOQ), accuracy and precision. The specificity assessment visually confirmed that the substance was detected without the introduction of other substances. The established method showed high linearity of the calibration curve and coefficient of correlation ($R^2$) of over the 0.999. HPLC was reported as five standard compounds equivalent using the following linear equation based on the calibration curve. The accuracy of measurement was 84.34 ~ 119.74% and the relative standard deviation (RSD) value was 0.28 ~ 1.60%. In addition, our established method showed high repeatability. The RSD value was 1.10 ~ 6.81%. So, we found the amount of the internal marker compounds in the O. elatus extract. These results demonstrated that can be used to quality evaluation of the O. elatus.

Parallel Algorithm of Improved FunkSVD Based on Spark

  • Yue, Xiaochen;Liu, Qicheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1649-1665
    • /
    • 2021
  • In view of the low accuracy of the traditional FunkSVD algorithm, and in order to improve the computational efficiency of the algorithm, this paper proposes a parallel algorithm of improved FunkSVD based on Spark (SP-FD). Using RMSProp algorithm to improve the traditional FunkSVD algorithm. The improved FunkSVD algorithm can not only solve the problem of decreased accuracy caused by iterative oscillations but also alleviate the impact of data sparseness on the accuracy of the algorithm, thereby achieving the effect of improving the accuracy of the algorithm. And using the Spark big data computing framework to realize the parallelization of the improved algorithm, to use RDD for iterative calculation, and to store calculation data in the iterative process in distributed memory to speed up the iteration. The Cartesian product operation in the improved FunkSVD algorithm is divided into blocks to realize parallel calculation, thereby improving the calculation speed of the algorithm. Experiments on three standard data sets in terms of accuracy, execution time, and speedup show that the SP-FD algorithm not only improves the recommendation accuracy, shortens the calculation interval compared to the traditional FunkSVD and several other algorithms but also shows good parallel performance in a cluster environment with multiple nodes. The analysis of experimental results shows that the SP-FD algorithm improves the accuracy and parallel computing capability of the algorithm, which is better than the traditional FunkSVD algorithm.

Best Measurement Capability and Standard Test Facility for the Water-level Gauges (수위계 표준시험장치 개발 및 최고측정능력에 관한 연구)

  • Shin, Gang-Wook;Hong, Sung-Taek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.1012-1017
    • /
    • 2007
  • Rain data and water-level data are importantly used for dam operation at flood period. Because dams are directly controlled by the water-level data, the characteristic of the water-level gauges is necessary to be managed. Thus, we developed the standard test facility and method for testing the water-level gauges which are a float type, a supersonic type and a radar type. And we calculated the uncertainty of the standard test facility to maintain the accuracy of water-level gauges. Through development of this facility, we could obtain the characteristics and the calibration factor of the water-level gauges. And, this study showed that the standard test facility can be widely used for dam operation and basin management.

봉제공업(縫製工業)의 표준시간자료(標準時間資料) 설정(設定)

  • Yeom, Yong-Gwon;Yong, Se-Jung;Hwang, Hak
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.4 no.1
    • /
    • pp.21-27
    • /
    • 1978
  • For labor-intensive sewing industry, productivity could be enhanced with the proper utilization of standard time system. This paper develops a standard data for sewing operations through three stages. The first is to identify the manual motions from sewing operations. The second is to simplify the MTM-1 data considering the frequency and the nature of basic motions occuring in the operations. Finally we synthesize the standard data using the simplified MTM-1 by the film analysis of the actual operations pictured in the field. The standard data developed is shown to be easier and faster with reasonable accuracy in determining the standard time compared to the MTM-1.

  • PDF

An Evaluation of the Accuracy of Mini-Wright Peak Flow Meter (mini-Wright Peak Flow Meter에 의한 PEFR 측정의 정확도)

  • Koh, Young-Il;Choi, In-Seon;Na, Hyun-Ju;Park, Seok-Chae;Jang, An-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.2
    • /
    • pp.298-308
    • /
    • 1997
  • Background : Portable devices for measuring peak expiratory flow(PEF) are now of proved value in the diagnosis and management of asthma and many lightweight PEF meters have become available. However, it is necessary to determine whether peak expiratory flow rate(PEFR) measurements measured with peak flowmeters is accurate and reproducible for clinical application. The aim of the present study is to define accuracy, agreement, and precision of mini-Wright peak flow meter(MPFM) against standard pneumotachygraph. Methods : The lung function tests by standard pneumotachygraph and PEFR measurement by MPFM were performed in a random order for 2 hours in 22 normal and 17 asthmatic subjects and also were performed for 3 successive days in 22 normals. Results : The PEFR measured with MPFM was significantly related to the PEFR and $FEV_1$ measured with standard pneumotachygraph in normal and asthmatics(for PEFR, r = 0.92 ; p < 0.001 ; for $FEV_1$, r = 0.78 ; p < 0.001). The accuracy of MPFM was within 100(limits of accuracy recommeded by NAEP) in all the subjects or 22 normal, mean difference from standard pneumotachygraph being 16.5L/min(percentage of difference being 2.90%) or 10.6L/min(percentage of difference being 1.75%), respectively. According to the method proposed by Bland and Altman, the 95% limits of the distribution of differences between MPFM and standard pneumotachygraph after correction of PEFR using our regression equation were +38.2 and -71.5L/min in all the subjects or 20.49~+9.49L/min in 22 normal and was similar to the intraindividual agreements for 3 successive days in normal. There was no statistically significant difference of PEFR measured with MPFM and standard pneumotachygraph among three days(p > 0.05) and the coefficient of variation($2.4{\pm}1.2%$) of PEFR measured with MPFM was significantly lower than that($5.2{\pm}3.5%$) with standard pneumotachygraph in normal (p < 0.05). Conclusion : This results suggest that the MPFM was as accurate and reproducible as standard pneumotachygraph for monitoring of PEFR in the asthmatic subjects.

  • PDF

A Study on Separation Minima Determination based on Surveillance System Accuracy Performance (감시시스템 정확도 성능에 따른 항공기간 최소분리간격 설정에 관한 연구)

  • Lee, Hyo-Jin;Lee, Keum-Jin;Baik, Ho-Jong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.4
    • /
    • pp.14-20
    • /
    • 2012
  • A properly determined separation minima applied in Air Traffic Management(ATM) is critical for safe and efficient aircraft operations. The separation minima is primarily determined by the accuracy performance of surveillance system, and, due to the stringent aviation safety standard, the position accuracy of the surveillance system must be estimated with a high level of reliability. This study proposed a method for estimating the position accuracy of surveillance system with a relatively small amount of data by finding upper confidence limit instead of maximum likelihood values of unknown parameters. Through the proposed method, it is possible to determine a required separation minima with a more reliability in the face of data scarcity which often occurs when we implement a new surveillance system such as Automatic Dependent Surveillance-Broadcast (ADS-B).