• Title/Summary/Keyword: accuracy of index

Search Result 1,251, Processing Time 0.025 seconds

Coronary Computed Tomography Angiography for the Diagnosis of Vasospastic Angina: Comparison with Invasive Coronary Angiography and Ergonovine Provocation Test

  • Jiesuck Park;Hyung-Kwan Kim;Eun-Ah Park;Jun-Bean Park;Seung-Pyo Lee;Whal Lee;Yong-Jin Kim;Dae-Won Sohn
    • Korean Journal of Radiology
    • /
    • v.20 no.5
    • /
    • pp.719-728
    • /
    • 2019
  • Objective: To investigate the diagnostic validity of coronary computed tomography angiography (cCTA) in vasospastic angina (VA) and factors associated with discrepant results between invasive coronary angiography with the ergonovine provocation test (iCAG-EPT) and cCTA. Materials and Methods: Of the 1397 patients diagnosed with VA from 2006 to 2016, 33 patients (75 lesions) with available cCTA data from within 6 months before iCAG-EPT were included. The severity of spasm (% diameter stenosis [%DS]) on iCAGEPT and cCTA was assessed, and the difference in %DS (Δ%DS) was calculated. Δ%DS was compared after classifying the lesions according to pre-cCTA-administered sublingual nitroglycerin (SL-NG) or beta-blockers. The lesions were further categorized with %DS ≥ 50% on iCAG-EPT or cCTA defined as a significant spasm, and the diagnostic performance of cCTA on identifying significant spasm relative to iCAG-EPT was assessed. Results: Compared to lesions without SL-NG treatment, those with SL-NG treatment showed a higher Δ%DS (39.2% vs. 22.1%, p = 0.002). However, there was no difference in Δ%DS with or without beta-blocker treatment (35.1% vs. 32.6%, p = 0.643). The significant difference in Δ%DS associated with SL-NG was more prominent in patients who were aged < 60 years, were male, had body mass index < 25 kg/m2, and had no history of hypertension, diabetes, or dyslipidemia. Based on iCAG-EPT as the reference, the per-lesion-based sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of cCTA for VA diagnosis were 7.5%, 94.0%, 60.0%, 47.1%, and 48.0%, respectively. Conclusion: For patients with clinically suspected VA, confirmation with iCAG-EPT needs to be considered without completely excluding the diagnosis of VA simply based on cCTA results, although further prospective studies are required for confirmation.

Real-Time Video Quality Assessment of Video Communication Systems (비디오 통신 시스템의 실시간 비디오 품질 측정 방법)

  • Kim, Byoung-Yong;Lee, Seon-Oh;Jung, Kwang-Su;Sim, Dong-Gyu;Lee, Soo-Youn
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.3
    • /
    • pp.75-88
    • /
    • 2009
  • This paper presents a video quality assessment method based on quality degradation factors of real-time multimedia streaming services. The video quality degradation is caused by video source compression and network states. In this paper, we propose a blocky metric on an image domain to measure quality degradation by video compression. In this paper, the proposed boundary strength index for the blocky metric is defined by ratio of the variation of two pixel values adjacent to $8{\times}8$ block boundary and the average variation at several pixels adjacent to the two boundary pixels. On the other hand, unnatural image movement caused by network performance deterioration such as jitter and delay factors can be observed. In this paper, a temporal-Jerkiness measurement method is proposed by computing statistics of luminance differences between consecutive frames and play-time intervals between frames. The proposed final Perceptual Video Quality Metric (PVQM) is proposed by consolidating both blocking strength and temporal-jerkiness. To evaluate performance of the proposed algorithm, the accuracy of the proposed algorithm is compared with Difference of Mean Opinion Score (DMOS) based on human visual system.

Diagnostic Significance of Combined Detection of Epstein-Barr Virus Antibodies, VCA/IgA, EA/IgA, Rta/IgG and EBNA1/IgA for Nasopharyngeal Carcinoma

  • Cai, Yong-Lin;Li, Jun;Lu, Ai-Ying;Zheng, Yu-Ming;Zhong, Wei-Ming;Wang, Wei;Gao, Jian-Quan;Zeng, Hong;Cheng, Ji-Ru;Tang, Min-Zhong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2001-2006
    • /
    • 2014
  • The objective of this study was to investigate the diagnostic significance of EBV antibody combined detection for nasopharyngeal carcinoma (NPC) in a high incidence region of southern China. Two hundred and eleven untreated NPC patients, 203 non-NPC ENT patients, and 210 healthy controls were recruited for the study. The titers of VCA/IgA and EA/IgA were assessed by immunoenzyme assay, and the levels of Rta/IgG and EBNA1/IgA were determined by enzyme-linked immunosorbent assay. The levels of VCA/IgA, EA/IgA, Rta/IgG and EBNA1/IgA demonstrated no association with gender or age (p>0.05). The receiver operating characteristic curve and the area under the curve were used to evaluate the diagnostic value. The sensitivity of VCA/IgA (98.1%) and the specificity of EA/IgA (98.5%) were the highest. When a logistic regression model was used to combine the results from multiple antibodies to increase the accuracy, the combination of VCA/IgA+Rta/IgG, whose area under the curve was 0.99, had the highest diagnostic efficiency, and its sensitivity, specificity and Youden index were 94.8%, 98.0% and 0.93 respectively. The data suggest that the combination of VCA/IgA+Rta/IgG may be most suitable for NPC serodiagnosis.

Construction Method of ECVAM using Land Cover Map and KOMPSAT-3A Image (토지피복지도와 KOMPSAT-3A위성영상을 활용한 환경성평가지도의 구축)

  • Kwon, Hee Sung;Song, Ah Ram;Jung, Se Jung;Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.5
    • /
    • pp.367-380
    • /
    • 2022
  • In this study, the periodic and simplified update and production way of the ECVAM (Environmental Conservation Value Assessment Map) was presented through the classification of environmental values using KOMPSAT-3A satellite imagery and land cover map. ECVAM is a map that evaluates the environmental value of the country in five stages based on 62 legal evaluation items and 8 environmental and ecological evaluation items, and is provided on two scales: 1:25000 and 1:5000. However, the 1:5000 scale environmental assessment map is being produced and serviced with a slow renewal cycle of one year due to various constraints such as the absence of reference materials and different production years. Therefore, in this study, one of the deep learning techniques, KOMPSAT-3A satellite image, SI (Spectral Indices), and land cover map were used to conduct this study to confirm the possibility of establishing an environmental assessment map. As a result, the accuracy was calculated to be 87.25% and 85.88%, respectively. Through the results of the study, it was possible to confirm the possibility of constructing an environmental assessment map using satellite imagery, optical index, and land cover classification.

Analysis of Optimal Index for Heat Morbidity (온열질환자 예측을 위한 최적의 지표 분석)

  • Sanghyuck Kim;Minju Song;Seokhwan Yun;Dongkun Lee
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.1
    • /
    • pp.9-17
    • /
    • 2024
  • The purpose of this study is to select and predict optimal heatwave indices for describing and predicting heat-related illnesses. Regression analysis was conducted using Heat-related illness surveillance system data for a number of heat-related illnesses and meteorological data from the Korea Meteorological Administration's Automatic Weather Station (AWS) for the period from 2021 to 2023. Daily average temperature, daily maximum temperature, daily average Wet Bulb Globe Temperature (WBGT), and daily maximum WBGT values were calculated and analyzed. The results indicated that among the four indicators, the daily maximum WBGT showed the highest suitability with an R2 value of 0.81 and RMSE of 0.98, with a threshold of 29.94 Celsius. During the entire analysis period, there were a total of 91 days exceeding this threshold, resulting in 339 cases of heat-related illnesses. Predictions of heat-related illness cases from 2021 to 2023 using the regression equation for daily maximum WBGT showed an accuracy with less than 10 cases of error annually, demonstrating a high level of precision. Through continuous research and refinement of data and analysis methods, it is anticipated that this approach could contribute to predicting and mitigating the impact of heatwaves.

Low-cost Prosthetic Hand Model using Machine Learning and 3D Printing (머신러닝과 3D 프린팅을 이용한 저비용 인공의수 모형)

  • Donguk Shin;Hojun Yeom;Sangsoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.19-23
    • /
    • 2024
  • Patients with amputations of both hands need prosthetic hands that serve both cosmetic and functional purposes, and research on prosthetic hands using electromyography of remaining muscles is active, but there is still the problem of high cost. In this study, an artificial prosthetic hand was manufactured and its performance was evaluated using low-cost parts and software such as a surface electromyography sensor, machine learning software Edge Impulse, Arduino Nano 33 BLE, and 3D printing. Using signals acquired with surface electromyography sensors and subjected to digital signal processing through Edge Impulse, the flexing movement signals of each finger were transmitted to the fingers of the prosthetic hand model through training to determine the type of finger movement using machine learning. When the digital signal processing conditions were set to a notch filter of 60 Hz, a bandpass filter of 10-300 Hz, and a sampling frequency of 1,000 Hz, the accuracy of machine learning was the highest at 82.1%. The possibility of being confused between each finger flexion movement was highest for the ring finger, with a 44.7% chance of being confused with the movement of the index finger. More research is needed to successfully develop a low-cost prosthetic hand.

A Study on Analyzing the Validity between the Predicted and Measured Concentrations of VOCs in the Atmosphere Using the CalTOX Model (CalTOX 모델에 의한 휘발성유기화합물의 대기 중 예측 농도와 실측 농도간의 타당성 분석에 관한 연구)

  • Kim, Ok;Lee, Minwoo;Park, Sanghyun;Park, Changyoung;Song, Youngho;Kim, Byeongbin;Choi, Jinha;Lee, Jinheon
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.5
    • /
    • pp.576-587
    • /
    • 2020
  • Objectives: This study calculated local residents exposures to VOCs (Volatile Organic Compounds) released into the atmosphere using the CalTOX model and carried out uncertainty analysis and sensitivity analysis. The model validity was analyzed by comparing the predicted and the actual atmospheric concentrations. Methods: Uncertainty was parsed by conducting a Monte Carlo simulation. Sensitivity was dissected with the regression (coefficients) method. The model validity was analyzed by applying r2 (coefficient of determination), RMSE (root mean square error), and the Nash-Sutcliffe EI (efficiency index) formula. Results: Among the concentrations in the atmosphere in this study, benzene was the highest and the lifetime average daily dose of benzene and the average daily dose of xylene were high. In terms of the sensitivity analysis outcome, the source term to air, exposure time, indoors resting (ETri), exposure time, outdoors at home (ETao), yearly average wind speed (v_w), contaminated area in ㎡ (Area), active breathing rate (BRa), resting breathing rate (BRr), exposure time, and active indoors (ETai) were elicited as input variables having great influence upon this model. In consequence of inspecting the validity of the model, r2 appeared to be a value close to 1 and RMSE appeared to be a value close to 0, but EI indicated unacceptable model efficiency. To supplement this value, the regression formula was derived for benzene with y=0.002+15.48x, ethylbenzene with y ≡ 0.001+57.240x, styrene with y=0.000+42.249x, toluene with y=0.004+91.588x, and xylene with y=0.000+0.007x. Conclusions: In consequence of inspecting the validity of the model, r2 appeared to be a value close to 1 and RMSE appeared to be a value close to 0, but EI indicated unacceptable model efficiency. This will be able to be used as base data for securing the accuracy and reliability of the model.

Prediction Model of Unbonded Tendon Stresses in Post-Tensioned Members (포스트텐션 부재에서 비부착긴장재의 응력 거동 예측 모델)

  • Kim, Kang-Su;Lee, Deuck-Hang;Kal, Gyung-Wan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.763-771
    • /
    • 2009
  • As the demand on long span structures increases more in recent years, the excessive deflection, in addition to the ultimate strength, in horizontal members becomes a very important issue. For this reason, as an alternative method to effectively solve the deflection problems, the application of post-tensioned structural system with unbonded tendon increases gradually. However, most of the existing researches on post-tensioned members with unbonded tendons (UPT) focused on the ultimate flexural strength, which would be impossible or improper to check serviceability such as deflections. Therefore, this study aims at proposing a stress prediction model for unbonded tendons that is applicable to the behavior of UPT members from the very initial loading stages, post-cracking states, and service to ultimate conditions. The applicability and accuracy of the proposed model were also evaluated comparing to the existing test results from literature. Based on such comparison results, it was verified that the proposed model provided very good predictions on tendon stresses of UPT members at various loading stages regardless their different characteristics; wide range of reinforcement index, different loading patterns, and etc. The proposed model especially well considered the effect of various loading types on stress increases of unbonded tendons, and it was also very suitable to apply on the over-reinforced members that easily happened during strengthening/repairing work.

Detection of Signs of Hostile Cyber Activity against External Networks based on Autoencoder (오토인코더 기반의 외부망 적대적 사이버 활동 징후 감지)

  • Park, Hansol;Kim, Kookjin;Jeong, Jaeyeong;Jang, jisu;Youn, Jaepil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.23 no.6
    • /
    • pp.39-48
    • /
    • 2022
  • Cyberattacks around the world continue to increase, and their damage extends beyond government facilities and affects civilians. These issues emphasized the importance of developing a system that can identify and detect cyber anomalies early. As above, in order to effectively identify cyber anomalies, several studies have been conducted to learn BGP (Border Gateway Protocol) data through a machine learning model and identify them as anomalies. However, BGP data is unbalanced data in which abnormal data is less than normal data. This causes the model to have a learning biased result, reducing the reliability of the result. In addition, there is a limit in that security personnel cannot recognize the cyber situation as a typical result of machine learning in an actual cyber situation. Therefore, in this paper, we investigate BGP (Border Gateway Protocol) that keeps network records around the world and solve the problem of unbalanced data by using SMOTE. After that, assuming a cyber range situation, an autoencoder classifies cyber anomalies and visualizes the classified data. By learning the pattern of normal data, the performance of classifying abnormal data with 92.4% accuracy was derived, and the auxiliary index also showed 90% performance, ensuring reliability of the results. In addition, it is expected to be able to effectively defend against cyber attacks because it is possible to effectively recognize the situation by visualizing the congested cyber space.

Deep Learning based Estimation of Depth to Bearing Layer from In-situ Data (딥러닝 기반 국내 지반의 지지층 깊이 예측)

  • Jang, Young-Eun;Jung, Jaeho;Han, Jin-Tae;Yu, Yonggyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.3
    • /
    • pp.35-42
    • /
    • 2022
  • The N-value from the Standard Penetration Test (SPT), which is one of the representative in-situ test, is an important index that provides basic geological information and the depth of the bearing layer for the design of geotechnical structures. In the aspect of time and cost-effectiveness, there is a need to carry out a representative sampling test. However, the various variability and uncertainty are existing in the soil layer, so it is difficult to grasp the characteristics of the entire field from the limited test results. Thus the spatial interpolation techniques such as Kriging and IDW (inverse distance weighted) have been used for predicting unknown point from existing data. Recently, in order to increase the accuracy of interpolation results, studies that combine the geotechnics and deep learning method have been conducted. In this study, based on the SPT results of about 22,000 holes of ground survey, a comparative study was conducted to predict the depth of the bearing layer using deep learning methods and IDW. The average error among the prediction results of the bearing layer of each analysis model was 3.01 m for IDW, 3.22 m and 2.46 m for fully connected network and PointNet, respectively. The standard deviation was 3.99 for IDW, 3.95 and 3.54 for fully connected network and PointNet. As a result, the point net deep learing algorithm showed improved results compared to IDW and other deep learning method.