• Title/Summary/Keyword: accuracy of attention

Search Result 681, Processing Time 0.054 seconds

Attention-LSTM based Lane Change Possibility Decision Algorithm for Urban Autonomous Driving (도심 자율주행을 위한 어텐션-장단기 기억 신경망 기반 차선 변경 가능성 판단 알고리즘 개발)

  • Lee, Heeseong;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.65-70
    • /
    • 2022
  • Lane change in urban environments is a challenge for both human-driving and automated driving due to their complexity and non-linearity. With the recent development of deep-learning, the use of the RNN network, which uses time series data, has become the mainstream in this field. Many researches using RNN show high accuracy in highway environments, but still do not for urban environments where the surrounding situation is complex and rapidly changing. Therefore, this paper proposes a lane change possibility decision network by adopting Attention layer, which is an SOTA in the field of seq2seq. By weighting each time step within a given time horizon, the context of the road situation is more human-like. A total 7D vectors of x, y distances and longitudinal relative speed of side front and rear vehicles, and longitudinal speed of ego vehicle were used as input. A total 5,614 expert data of 4,098 yield cases and 1,516 non-yield cases were used for training, and the performance of this network was tested through 1,817 data. Our network achieves 99.641% of test accuracy, which is about 4% higher than a network using only LSTM in an urban environment. Furthermore, it shows robust behavior to false-positive or true-negative objects.

Modified YOLOv4S based on Deep learning with Feature Fusion and Spatial Attention (특징 융합과 공간 강조를 적용한 딥러닝 기반의 개선된 YOLOv4S)

  • Hwang, Beom-Yeon;Lee, Sang-Hun;Lee, Seung-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.31-37
    • /
    • 2021
  • In this paper proposed a feature fusion and spatial attention-based modified YOLOv4S for small and occluded detection. Conventional YOLOv4S is a lightweight network and lacks feature extraction capability compared to the method of the deep network. The proposed method first combines feature maps of different scales with feature fusion to enhance semantic and low-level information. In addition expanding the receptive field with dilated convolution, the detection accuracy for small and occluded objects was improved. Second by improving the conventional spatial information with spatial attention, the detection accuracy of objects classified and occluded between objects was improved. PASCAL VOC and COCO datasets were used for quantitative evaluation of the proposed method. The proposed method improved mAP by 2.7% in the PASCAL VOC dataset and 1.8% in the COCO dataset compared to the Conventional YOLOv4S.

Differential Response to Joint Attention in Children with Autism Spectrum Disorder Depending on the Level of Attentional Cues (주의 단서 수준에 따른 자폐 범주성 장애 아동의 공동주의집중 반응 연구)

  • Yoo, Ga Eul
    • Journal of Music and Human Behavior
    • /
    • v.11 no.1
    • /
    • pp.21-37
    • /
    • 2014
  • The significant role of joint attention in the development of children with autism spectrum disorder (ASD) has highlighted the importance of early intervention. With the emphasis on the effective cueing and reinforcer for orienting to social stimuli in improving responding to joint attention (RJA) of children with ASD, the use of musical cue was hypothesized. This study aimed to examine the occurrence of RJA behaviors depending on the attentional cue, which differed in the level of information and type of auditory modality. Nine children with ASD participated in this study. The use of eight different joint attention cues were analyzed in terms of the frequency and accuracy of RJA behaviors elicited. The results of the study showed that RJA behaviors occurred more frequently with musical cues than with verbal cues and the mean accuracy rate of RJA was higher with musical cues (p = .047). Musically delivered eliciting and directing cues accompanied with pointing elicited the highest attentional shift and RJA accuracy. The significant increases in RJA with the use of musical cues indicated that incorporating musical elements into an attentional cue may provide more accurate cue information, enough to improve RJA behaviors of children with autism.

FGW-FER: Lightweight Facial Expression Recognition with Attention

  • Huy-Hoang Dinh;Hong-Quan Do;Trung-Tung Doan;Cuong Le;Ngo Xuan Bach;Tu Minh Phuong;Viet-Vu Vu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2505-2528
    • /
    • 2023
  • The field of facial expression recognition (FER) has been actively researched to improve human-computer interaction. In recent years, deep learning techniques have gained popularity for addressing FER, with numerous studies proposing end-to-end frameworks that stack or widen significant convolutional neural network layers. While this has led to improved performance, it has also resulted in larger model sizes and longer inference times. To overcome this challenge, our work introduces a novel lightweight model architecture. The architecture incorporates three key factors: Depth-wise Separable Convolution, Residual Block, and Attention Modules. By doing so, we aim to strike a balance between model size, inference speed, and accuracy in FER tasks. Through extensive experimentation on popular benchmark FER datasets, our proposed method has demonstrated promising results. Notably, it stands out due to its substantial reduction in parameter count and faster inference time, while maintaining accuracy levels comparable to other lightweight models discussed in the existing literature.

Analysis of the Online Review Based on the Theme Using the Hierarchical Attention Network (Hierarchical Attention Network를 활용한 주제에 따른 온라인 고객 리뷰 분석 모델)

  • Jang, In Ho;Park, Ki Yeon;Lee, Zoon Ky
    • Journal of Information Technology Services
    • /
    • v.17 no.2
    • /
    • pp.165-177
    • /
    • 2018
  • Recently, online commerces are becoming more common due to factors such as mobile technology development and smart device dissemination, and online review has a big influence on potential buyer's purchase decision. This study presents a set of analytical methodologies for understanding the meaning of customer reviews of products in online transaction. Using techniques currently developed in deep learning are implemented Hierarchical Attention Network for analyze meaning in online reviews. By using these techniques, we could solve time consuming pre-data analysis time problem and multiple topic problems. To this end, this study analyzes customer reviews of laptops sold in domestic online shopping malls. Our result successfully demonstrates over 90% classification accuracy. Therefore, this study classified the unstructured text data in the semantic analysis and confirmed the practical application possibility of the review analysis process.

Tobacco Retail License Recognition Based on Dual Attention Mechanism

  • Shan, Yuxiang;Ren, Qin;Wang, Cheng;Wang, Xiuhui
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.480-488
    • /
    • 2022
  • Images of tobacco retail licenses have complex unstructured characteristics, which is an urgent technical problem in the robot process automation of tobacco marketing. In this paper, a novel recognition approach using a double attention mechanism is presented to realize the automatic recognition and information extraction from such images. First, we utilized a DenseNet network to extract the license information from the input tobacco retail license data. Second, bi-directional long short-term memory was used for coding and decoding using a continuous decoder integrating dual attention to realize the recognition and information extraction of tobacco retail license images without segmentation. Finally, several performance experiments were conducted using a largescale dataset of tobacco retail licenses. The experimental results show that the proposed approach achieves a correction accuracy of 98.36% on the ZY-LQ dataset, outperforming most existing methods.

A group-wise attention based decoder for lightweight salient object detection on edge-devices (엣지 디바이스에서 객체 탐지를 위한 그룹별 어탠션 기반 경량 디코더 연구)

  • Thien-Thu Ngo;Md Delowar Hossain;Eui-Nam Huh
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.30-33
    • /
    • 2023
  • The recent scholarly focus has been directed towards the expeditious and accurate detection of salient objects, a task that poses considerable challenges for resource-limited edge devices due to the high computational demands of existing models. To mitigate this issue, some contemporary research has favored inference speed at the expense of accuracy. In an effort to reconcile the intrinsic trade-off between accuracy and computational efficiency, we present novel model for salient object detection. Our model incorporate group-wise attentive module within the decoder of the encoder-decoder framework, with the aim of minimizing computational overhead while preserving detection accuracy. Additionally, the proposed architectural design employs attention mechanisms to generate boundary information and semantic features pertinent to the salient objects. Through various experimentation across five distinct datasets, we have empirically substantiated that our proposed models achieve performance metrics comparable to those of computationally intensive state-of-the-art models, yet with a marked reduction in computational complexity.

Setting the scene: CFD and symposium overview

  • Murakami, Shuzo
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.83-88
    • /
    • 2002
  • The present situation of CWE(Computational Wind Engineering) and the papers presented to the CWE 2000 Symposium are reviewed from the following viewpoints; 1) topics treated, 2) utilization of commercial code (software), 3) incompleteness of CWE, 4) remaining research subjects, 5) prediction accuracy, 6) new fields of CWE application, etc. Firstly, new tendencies within CWE applications are indicated. Next, the over-attention being given to the application field and the lack of attention to fundamental problems, including prediction error analysis, are pointed out. Lastly, the future trends of CFD (Computational Fluid Dynamics) applications to wind engineering design are discussed.

Aspect-Based Sentiment Analysis with Position Embedding Interactive Attention Network

  • Xiang, Yan;Zhang, Jiqun;Zhang, Zhoubin;Yu, Zhengtao;Xian, Yantuan
    • Journal of Information Processing Systems
    • /
    • v.18 no.5
    • /
    • pp.614-627
    • /
    • 2022
  • Aspect-based sentiment analysis is to discover the sentiment polarity towards an aspect from user-generated natural language. So far, most of the methods only use the implicit position information of the aspect in the context, instead of directly utilizing the position relationship between the aspect and the sentiment terms. In fact, neighboring words of the aspect terms should be given more attention than other words in the context. This paper studies the influence of different position embedding methods on the sentimental polarities of given aspects, and proposes a position embedding interactive attention network based on a long short-term memory network. Firstly, it uses the position information of the context simultaneously in the input layer and the attention layer. Secondly, it mines the importance of different context words for the aspect with the interactive attention mechanism. Finally, it generates a valid representation of the aspect and the context for sentiment classification. The model which has been posed was evaluated on the datasets of the Semantic Evaluation 2014. Compared with other baseline models, the accuracy of our model increases by about 2% on the restaurant dataset and 1% on the laptop dataset.

Boundary and Reverse Attention Module for Lung Nodule Segmentation in CT Images (CT 영상에서 폐 결절 분할을 위한 경계 및 역 어텐션 기법)

  • Hwang, Gyeongyeon;Ji, Yewon;Yoon, Hakyoung;Lee, Sang Jun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.5
    • /
    • pp.265-272
    • /
    • 2022
  • As the risk of lung cancer has increased, early-stage detection and treatment of cancers have received a lot of attention. Among various medical imaging approaches, computer tomography (CT) has been widely utilized to examine the size and growth rate of lung nodules. However, the process of manual examination is a time-consuming task, and it causes physical and mental fatigue for medical professionals. Recently, many computer-aided diagnostic methods have been proposed to reduce the workload of medical professionals. In recent studies, encoder-decoder architectures have shown reliable performances in medical image segmentation, and it is adopted to predict lesion candidates. However, localizing nodules in lung CT images is a challenging problem due to the extremely small sizes and unstructured shapes of nodules. To solve these problems, we utilize atrous spatial pyramid pooling (ASPP) to minimize the loss of information for a general U-Net baseline model to extract rich representations from various receptive fields. Moreover, we propose mixed-up attention mechanism of reverse, boundary and convolutional block attention module (CBAM) to improve the accuracy of segmentation small scale of various shapes. The performance of the proposed model is compared with several previous attention mechanisms on the LIDC-IDRI dataset, and experimental results demonstrate that reverse, boundary, and CBAM (RB-CBAM) are effective in the segmentation of small nodules.