• Title/Summary/Keyword: accuracy index

Search Result 1,237, Processing Time 0.026 seconds

Analysis of Optimal Index for Heat Morbidity (온열질환자 예측을 위한 최적의 지표 분석)

  • Sanghyuck Kim;Minju Song;Seokhwan Yun;Dongkun Lee
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.1
    • /
    • pp.9-17
    • /
    • 2024
  • The purpose of this study is to select and predict optimal heatwave indices for describing and predicting heat-related illnesses. Regression analysis was conducted using Heat-related illness surveillance system data for a number of heat-related illnesses and meteorological data from the Korea Meteorological Administration's Automatic Weather Station (AWS) for the period from 2021 to 2023. Daily average temperature, daily maximum temperature, daily average Wet Bulb Globe Temperature (WBGT), and daily maximum WBGT values were calculated and analyzed. The results indicated that among the four indicators, the daily maximum WBGT showed the highest suitability with an R2 value of 0.81 and RMSE of 0.98, with a threshold of 29.94 Celsius. During the entire analysis period, there were a total of 91 days exceeding this threshold, resulting in 339 cases of heat-related illnesses. Predictions of heat-related illness cases from 2021 to 2023 using the regression equation for daily maximum WBGT showed an accuracy with less than 10 cases of error annually, demonstrating a high level of precision. Through continuous research and refinement of data and analysis methods, it is anticipated that this approach could contribute to predicting and mitigating the impact of heatwaves.

Low-cost Prosthetic Hand Model using Machine Learning and 3D Printing (머신러닝과 3D 프린팅을 이용한 저비용 인공의수 모형)

  • Donguk Shin;Hojun Yeom;Sangsoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.19-23
    • /
    • 2024
  • Patients with amputations of both hands need prosthetic hands that serve both cosmetic and functional purposes, and research on prosthetic hands using electromyography of remaining muscles is active, but there is still the problem of high cost. In this study, an artificial prosthetic hand was manufactured and its performance was evaluated using low-cost parts and software such as a surface electromyography sensor, machine learning software Edge Impulse, Arduino Nano 33 BLE, and 3D printing. Using signals acquired with surface electromyography sensors and subjected to digital signal processing through Edge Impulse, the flexing movement signals of each finger were transmitted to the fingers of the prosthetic hand model through training to determine the type of finger movement using machine learning. When the digital signal processing conditions were set to a notch filter of 60 Hz, a bandpass filter of 10-300 Hz, and a sampling frequency of 1,000 Hz, the accuracy of machine learning was the highest at 82.1%. The possibility of being confused between each finger flexion movement was highest for the ring finger, with a 44.7% chance of being confused with the movement of the index finger. More research is needed to successfully develop a low-cost prosthetic hand.

Study on estimating skeletal maturity of hand-wrist using multiple regression model (다중회귀모형을 이용한 수완부 골성숙도의 추정에 관한 연구)

  • Kim, Kyung-Ho;Yu, Hyung-Seog;Kim, Suk-Hyun
    • The korean journal of orthodontics
    • /
    • v.27 no.5 s.64
    • /
    • pp.853-864
    • /
    • 1997
  • The evaluation of growth potency can be done with many physiologic indicators. It has been well known that skeletal maturity has a close relation with both sexual maturity and somatic maturity, but the correlation between skeletal maturity and dental maturity was believed to be less certain. But, recent studies show that specific teeth, including lower canines, present close correlations with skeletal maturity. So, in this study, we studied hand-wrist X-ray films and orthopantomograms of 387 Korean boys and girls aged from 7 to 15; the purpose was to determine skeletal and dental maturity, and to find out a new method to estimate individual skeletal maturity using multiple-regression model, without the help of hand-wrist X-ray film. As a result of this study, followings were observed. 1. The following multiple-regression model can estimate skeletal maturity index (SMI) with 84% of accuracy, and regression coefficient of chronologic age, sex and lower canine show statistical significance. SMI = 0.60 x chronologic age - 1.67 x sex$^{**}$ + 0.88 x lower canine$^{*}$ - 0.05 x lower 2nd molar$^{*}$ - 10.3 $^{*}$ : mean age corresponding each developing stage, $^{**}$ : male=1, femal=0 2. The following multiple-regression model can estimate skeletal age with 87% of accuracy, and regression coefficient of chronologic age, sex and lower canine show statistical significance. Skeletal age = 0.75 x chronologic age - 0.55 x sex$^{**}$ + 0.71 x lower canine$^{*}$ - 0.09 x lower 2nd molar* -5.77 $^{*}$ : mean age corresponding each developing stage, $^{**}$ : male=1, femal=0

  • PDF

Improvement and Validation of Convective Rainfall Rate Retrieved from Visible and Infrared Image Bands of the COMS Satellite (COMS 위성의 가시 및 적외 영상 채널로부터 복원된 대류운의 강우강도 향상과 검증)

  • Moon, Yun Seob;Lee, Kangyeol
    • Journal of the Korean earth science society
    • /
    • v.37 no.7
    • /
    • pp.420-433
    • /
    • 2016
  • The purpose of this study is to improve the calibration matrixes of 2-D and 3-D convective rainfall rates (CRR) using the brightness temperature of the infrared $10.8{\mu}m$ channel (IR), the difference of brightness temperatures between infrared $10.8{\mu}m$ and vapor $6.7{\mu}m$ channels (IR-WV), and the normalized reflectance of the visible channel (VIS) from the COMS satellite and rainfall rate from the weather radar for the period of 75 rainy days from April 22, 2011 to October 22, 2011 in Korea. Especially, the rainfall rate data of the weather radar are used to validate the new 2-D and 3-DCRR calibration matrixes suitable for the Korean peninsula for the period of 24 rainy days in 2011. The 2D and 3D calibration matrixes provide the basic and maximum CRR values ($mm\;h^{-1}$) by multiplying the rain probability matrix, which is calculated by using the number of rainy and no-rainy pixels with associated 2-D (IR, IR-WV) and 3-D (IR, IR-WV, VIS) matrixes, by the mean and maximum rainfall rate matrixes, respectively, which is calculated by dividing the accumulated rainfall rate by the number of rainy pixels and by the product of the maximum rain rate for the calibration period by the number of rain occurrences. Finally, new 2-D and 3-D CRR calibration matrixes are obtained experimentally from the regression analysis of both basic and maximum rainfall rate matrixes. As a result, an area of rainfall rate more than 10 mm/h is magnified in the new ones as well as CRR is shown in lower class ranges in matrixes between IR brightness temperature and IR-WV brightness temperature difference than the existing ones. Accuracy and categorical statistics are computed for the data of CRR events occurred during the given period. The mean error (ME), mean absolute error (MAE), and root mean squire error (RMSE) in new 2-D and 3-D CRR calibrations led to smaller than in the existing ones, where false alarm ratio had decreased, probability of detection had increased a bit, and critical success index scores had improved. To take into account the strong rainfall rate in the weather events such as thunderstorms and typhoon, a moisture correction factor is corrected. This factor is defined as the product of the total precipitable waterby the relative humidity (PW RH), a mean value between surface and 500 hPa level, obtained from a numerical model or the COMS retrieval data. In this study, when the IR cloud top brightness temperature is lower than 210 K and the relative humidity is greater than 40%, the moisture correction factor is empirically scaled from 1.0 to 2.0 basing on PW RH values. Consequently, in applying to this factor in new 2D and 2D CRR calibrations, the ME, MAE, and RMSE are smaller than the new ones.

Development of a Detection Model for the Companies Designated as Administrative Issue in KOSDAQ Market (KOSDAQ 시장의 관리종목 지정 탐지 모형 개발)

  • Shin, Dong-In;Kwahk, Kee-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.157-176
    • /
    • 2018
  • The purpose of this research is to develop a detection model for companies designated as administrative issue in KOSDAQ market using financial data. Administration issue designates the companies with high potential for delisting, which gives them time to overcome the reasons for the delisting under certain restrictions of the Korean stock market. It acts as an alarm to inform investors and market participants of which companies are likely to be delisted and warns them to make safe investments. Despite this importance, there are relatively few studies on administration issues prediction model in comparison with the lots of studies on bankruptcy prediction model. Therefore, this study develops and verifies the detection model of the companies designated as administrative issue using financial data of KOSDAQ companies. In this study, logistic regression and decision tree are proposed as the data mining models for detecting administrative issues. According to the results of the analysis, the logistic regression model predicted the companies designated as administrative issue using three variables - ROE(Earnings before tax), Cash flows/Shareholder's equity, and Asset turnover ratio, and its overall accuracy was 86% for the validation dataset. The decision tree (Classification and Regression Trees, CART) model applied the classification rules using Cash flows/Total assets and ROA(Net income), and the overall accuracy reached 87%. Implications of the financial indictors selected in our logistic regression and decision tree models are as follows. First, ROE(Earnings before tax) in the logistic detection model shows the profit and loss of the business segment that will continue without including the revenue and expenses of the discontinued business. Therefore, the weakening of the variable means that the competitiveness of the core business is weakened. If a large part of the profits is generated from one-off profit, it is very likely that the deterioration of business management is further intensified. As the ROE of a KOSDAQ company decreases significantly, it is highly likely that the company can be delisted. Second, cash flows to shareholder's equity represents that the firm's ability to generate cash flow under the condition that the financial condition of the subsidiary company is excluded. In other words, the weakening of the management capacity of the parent company, excluding the subsidiary's competence, can be a main reason for the increase of the possibility of administrative issue designation. Third, low asset turnover ratio means that current assets and non-current assets are ineffectively used by corporation, or that asset investment by corporation is excessive. If the asset turnover ratio of a KOSDAQ-listed company decreases, it is necessary to examine in detail corporate activities from various perspectives such as weakening sales or increasing or decreasing inventories of company. Cash flow / total assets, a variable selected by the decision tree detection model, is a key indicator of the company's cash condition and its ability to generate cash from operating activities. Cash flow indicates whether a firm can perform its main activities(maintaining its operating ability, repaying debts, paying dividends and making new investments) without relying on external financial resources. Therefore, if the index of the variable is negative(-), it indicates the possibility that a company has serious problems in business activities. If the cash flow from operating activities of a specific company is smaller than the net profit, it means that the net profit has not been cashed, indicating that there is a serious problem in managing the trade receivables and inventory assets of the company. Therefore, it can be understood that as the cash flows / total assets decrease, the probability of administrative issue designation and the probability of delisting are increased. In summary, the logistic regression-based detection model in this study was found to be affected by the company's financial activities including ROE(Earnings before tax). However, decision tree-based detection model predicts the designation based on the cash flows of the company.

Evaluation of the Accuracy for Respiratory-gated RapidArc (RapidArc를 이용한 호흡연동 회전세기조절방사선치료 할 때 전달선량의 정확성 평가)

  • Sung, Jiwon;Yoon, Myonggeun;Chung, Weon Kuu;Bae, Sun Hyun;Shin, Dong Oh;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.127-132
    • /
    • 2013
  • The position of the internal organs can change continually and periodically inside the body due to the respiration. To reduce the respiration induced uncertainty of dose localization, one can use a respiratory gated radiotherapy where a radiation beam is exposed during the specific time of period. The main disadvantage of this method is that it usually requests a long treatment time, the massive effort during the treatment and the limitation of the patient selection. In this sense, the combination of the real-time position management (RPM) system and the volumetric intensity modulated radiotherapy (RapidArc) is promising since it provides a short treatment time compared with the conventional respiratory gated treatments. In this study, we evaluated the accuracy of the respiratory gated RapidArc treatment. Total sic patient cases were used for this study and each case was planned by RapidArc technique using varian ECLIPSE v8.6 planning machine. For the Quality Assurance (QA), a MatriXX detector and I'mRT software were used. The results show that more than 97% of area gives the gamma value less than one with 3% dose and 3 mm distance to agreement condition, which indicates the measured dose is well matched with the treatment plan's dose distribution for the gated RapidArc treatment cases.

Derivation of Green Coverage Ratio Based on Deep Learning Using MAV and UAV Aerial Images (유·무인 항공영상을 이용한 심층학습 기반 녹피율 산정)

  • Han, Seungyeon;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1757-1766
    • /
    • 2021
  • The green coverage ratio is the ratio of the land area to green coverage area, and it is used as a practical urban greening index. The green coverage ratio is calculated based on the land cover map, but low spatial resolution and inconsistent production cycle of land cover map make it difficult to calculate the correct green coverage area and analyze the precise green coverage. Therefore, this study proposes a new method to calculate green coverage area using aerial images and deep neural networks. Green coverage ratio can be quickly calculated using manned aerial images acquired by local governments, but precise analysis is difficult because components of image such as acquisition date, resolution, and sensors cannot be selected and modified. This limitation can be supplemented by using an unmanned aerial vehicle that can mount various sensors and acquire high-resolution images due to low-altitude flight. In this study, we proposed a method to calculate green coverage ratio from manned or unmanned aerial images, and experimentally verified the proposed method. Aerial images enable precise analysis by high resolution and relatively constant cycles, and deep learning can automatically detect green coverage area in aerial images. Local governments acquire manned aerial images for various purposes every year and we can utilize them to calculate green coverage ratio quickly. However, acquired manned aerial images may be difficult to accurately analyze because details such as acquisition date, resolution, and sensors cannot be selected. These limitations can be supplemented by using unmanned aerial vehicles that can mount various sensors and acquire high-resolution images due to low-altitude flight. Accordingly, the green coverage ratio was calculated from the two aerial images, and as a result, it could be calculated with high accuracy from all green types. However, the green coverage ratio calculated from manned aerial images had limitations in complex environments. The unmanned aerial images used to compensate for this were able to calculate a high accuracy of green coverage ratio even in complex environments, and more precise green area detection was possible through additional band images. In the future, it is expected that the rust rate can be calculated effectively by using the newly acquired unmanned aerial imagery supplementary to the existing manned aerial imagery.

Preliminary Inspection Prediction Model to select the on-Site Inspected Foreign Food Facility using Multiple Correspondence Analysis (차원축소를 활용한 해외제조업체 대상 사전점검 예측 모형에 관한 연구)

  • Hae Jin Park;Jae Suk Choi;Sang Goo Cho
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.121-142
    • /
    • 2023
  • As the number and weight of imported food are steadily increasing, safety management of imported food to prevent food safety accidents is becoming more important. The Ministry of Food and Drug Safety conducts on-site inspections of foreign food facilities before customs clearance as well as import inspection at the customs clearance stage. However, a data-based safety management plan for imported food is needed due to time, cost, and limited resources. In this study, we tried to increase the efficiency of the on-site inspection by preparing a machine learning prediction model that pre-selects the companies that are expected to fail before the on-site inspection. Basic information of 303,272 foreign food facilities and processing businesses collected in the Integrated Food Safety Information Network and 1,689 cases of on-site inspection information data collected from 2019 to April 2022 were collected. After preprocessing the data of foreign food facilities, only the data subject to on-site inspection were extracted using the foreign food facility_code. As a result, it consisted of a total of 1,689 data and 103 variables. For 103 variables, variables that were '0' were removed based on the Theil-U index, and after reducing by applying Multiple Correspondence Analysis, 49 characteristic variables were finally derived. We build eight different models and perform hyperparameter tuning through 5-fold cross validation. Then, the performance of the generated models are evaluated. The research purpose of selecting companies subject to on-site inspection is to maximize the recall, which is the probability of judging nonconforming companies as nonconforming. As a result of applying various algorithms of machine learning, the Random Forest model with the highest Recall_macro, AUROC, Average PR, F1-score, and Balanced Accuracy was evaluated as the best model. Finally, we apply Kernal SHAP (SHapley Additive exPlanations) to present the selection reason for nonconforming facilities of individual instances, and discuss applicability to the on-site inspection facility selection system. Based on the results of this study, it is expected that it will contribute to the efficient operation of limited resources such as manpower and budget by establishing an imported food management system through a data-based scientific risk management model.

Target dose study of effects of changes in the AAA Calculation resolution on Lung SABR plan (Lung SABR plan시 AAA의 Calculation resolution 변화에 의한 Target dose 영향 연구)

  • Kim, Dae Il;Son, Sang Jun;Ahn, Bum Seok;Jung, Chi Hoon;Yoo, Suk Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.171-176
    • /
    • 2014
  • Purpose : Changing the calculation grid of AAA in Lung SABR plan and to analyze the changes in target dose, and investigated the effects associated with it, and considered a suitable method of application. Materials and Methods : 4D CT image that was used to plan all been taken with Brilliance Big Bore CT (Philips, Netherlands) and in Lung SABR plan($Eclipse^{TM}$ ver10.0.42, Varian, the USA), use anisotropic analytic algorithm(AAA, ver.10, Varian Medical Systems, Palo Alto, CA, USA) and, was calculated by the calculation grid 1.0, 3.0, 5.0 mm in each Lung SABR plan. Results : Lung SABR plan of 10 cases are using each of 1.0 mm, 3.0 mm, 5.0 mm calculation grid, and in case of use a 1.0 mm calculation grid $V_{98}$. of the prescribed dose is about $99.5%{\pm}1.5%$, $D_{min}$ of the prescribed dose is about $92.5{\pm}1.5%$ and Homogeneity Index(HI) is $1.0489{\pm}0.0025$. In the case of use a 3.0 mm calculation grid $V_{98}$ dose of the prescribed dose is about $90{\pm}4.5%$, $D_{min}$ of the prescribed dose is about $87.5{\pm}3%$ and HI is about $1.07{\pm}1$. In the case of use a 5.0 mm calculation grid $V_{98}$ dose of the prescribed dose is about $63{\pm}15%$, $D_{min}$ of the prescribed dose is about $83{\pm}4%$ and HI is about $1.13{\pm}0.2$, respectively. Conclusion : The calculation grid of 1.0 mm is better improves the accuracy of dose calculation than using 3.0 mm and 5.0 mm, although calculation times increase in the case of smaller PTV relatively. As lung, spread relatively large and low density and small PTV, it is considered and good to use a calculation grid of 1.0 mm.

Increasing Accuracy of Classifying Useful Reviews by Removing Neutral Terms (중립도 기반 선택적 단어 제거를 통한 유용 리뷰 분류 정확도 향상 방안)

  • Lee, Minsik;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.129-142
    • /
    • 2016
  • Customer product reviews have become one of the important factors for purchase decision makings. Customers believe that reviews written by others who have already had an experience with the product offer more reliable information than that provided by sellers. However, there are too many products and reviews, the advantage of e-commerce can be overwhelmed by increasing search costs. Reading all of the reviews to find out the pros and cons of a certain product can be exhausting. To help users find the most useful information about products without much difficulty, e-commerce companies try to provide various ways for customers to write and rate product reviews. To assist potential customers, online stores have devised various ways to provide useful customer reviews. Different methods have been developed to classify and recommend useful reviews to customers, primarily using feedback provided by customers about the helpfulness of reviews. Most shopping websites provide customer reviews and offer the following information: the average preference of a product, the number of customers who have participated in preference voting, and preference distribution. Most information on the helpfulness of product reviews is collected through a voting system. Amazon.com asks customers whether a review on a certain product is helpful, and it places the most helpful favorable and the most helpful critical review at the top of the list of product reviews. Some companies also predict the usefulness of a review based on certain attributes including length, author(s), and the words used, publishing only reviews that are likely to be useful. Text mining approaches have been used for classifying useful reviews in advance. To apply a text mining approach based on all reviews for a product, we need to build a term-document matrix. We have to extract all words from reviews and build a matrix with the number of occurrences of a term in a review. Since there are many reviews, the size of term-document matrix is so large. It caused difficulties to apply text mining algorithms with the large term-document matrix. Thus, researchers need to delete some terms in terms of sparsity since sparse words have little effects on classifications or predictions. The purpose of this study is to suggest a better way of building term-document matrix by deleting useless terms for review classification. In this study, we propose neutrality index to select words to be deleted. Many words still appear in both classifications - useful and not useful - and these words have little or negative effects on classification performances. Thus, we defined these words as neutral terms and deleted neutral terms which are appeared in both classifications similarly. After deleting sparse words, we selected words to be deleted in terms of neutrality. We tested our approach with Amazon.com's review data from five different product categories: Cellphones & Accessories, Movies & TV program, Automotive, CDs & Vinyl, Clothing, Shoes & Jewelry. We used reviews which got greater than four votes by users and 60% of the ratio of useful votes among total votes is the threshold to classify useful and not-useful reviews. We randomly selected 1,500 useful reviews and 1,500 not-useful reviews for each product category. And then we applied Information Gain and Support Vector Machine algorithms to classify the reviews and compared the classification performances in terms of precision, recall, and F-measure. Though the performances vary according to product categories and data sets, deleting terms with sparsity and neutrality showed the best performances in terms of F-measure for the two classification algorithms. However, deleting terms with sparsity only showed the best performances in terms of Recall for Information Gain and using all terms showed the best performances in terms of precision for SVM. Thus, it needs to be careful for selecting term deleting methods and classification algorithms based on data sets.