• Title/Summary/Keyword: accumulation

Search Result 7,624, Processing Time 0.034 seconds

A Performance Comparison of Land-Based Floating Debris Detection Based on Deep Learning and Its Field Applications (딥러닝 기반 육상기인 부유쓰레기 탐지 모델 성능 비교 및 현장 적용성 평가)

  • Suho Bak;Seon Woong Jang;Heung-Min Kim;Tak-Young Kim;Geon Hui Ye
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.193-205
    • /
    • 2023
  • A large amount of floating debris from land-based sources during heavy rainfall has negative social, economic, and environmental impacts, but there is a lack of monitoring systems for floating debris accumulation areas and amounts. With the recent development of artificial intelligence technology, there is a need to quickly and efficiently study large areas of water systems using drone imagery and deep learning-based object detection models. In this study, we acquired various images as well as drone images and trained with You Only Look Once (YOLO)v5s and the recently developed YOLO7 and YOLOv8s to compare the performance of each model to propose an efficient detection technique for land-based floating debris. The qualitative performance evaluation of each model showed that all three models are good at detecting floating debris under normal circumstances, but the YOLOv8s model missed or duplicated objects when the image was overexposed or the water surface was highly reflective of sunlight. The quantitative performance evaluation showed that YOLOv7 had the best performance with a mean Average Precision (intersection over union, IoU 0.5) of 0.940, which was better than YOLOv5s (0.922) and YOLOv8s (0.922). As a result of generating distortion in the color and high-frequency components to compare the performance of models according to data quality, the performance degradation of the YOLOv8s model was the most obvious, and the YOLOv7 model showed the lowest performance degradation. This study confirms that the YOLOv7 model is more robust than the YOLOv5s and YOLOv8s models in detecting land-based floating debris. The deep learning-based floating debris detection technique proposed in this study can identify the spatial distribution of floating debris by category, which can contribute to the planning of future cleanup work.

A Study on Domestic Applicability for the Korean Cosmic-Ray Soil Moisture Observing System (한국형 코즈믹 레이 토양수분 관측 시스템을 위한 국내 적용성 연구)

  • Jaehwan Jeong;Seongkeun Cho;Seulchan Lee;Kiyoung Kim;Yongjun Lee;Chung Dae Lee;Sinjae Lee;Minha Choi
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.233-246
    • /
    • 2023
  • In terms of understanding the water cycle and efficient water resource management, the importance of soil moisture has been highlighted. However, in Korea, the lack of qualified in-situ soil moisture data results in very limited utility. Even if satellite-based data are applied, the absence of ground reference data makes objective evaluation and correction difficult. The cosmic-ray neutron probe (CRNP) can play a key role in producing data for satellite data calibration. The installation of CRNP is non-invasive, minimizing damage to the soil and vegetation environment, and has the advantage of having a spatial representative for the intermediate scale. These characteristics are advantageous to establish an observation network in Korea which has lots of mountainous areas with dense vegetation. Therefore, this study was conducted to evaluate the applicability of the CRNP soil moisture observatory in Korea as part of the establishment of a Korean cOsmic-ray Soil Moisture Observing System (KOSMOS). The CRNP observation station was installed with the Gunup-ri observation station, considering the ease of securing power and installation sites and the efficient use of other hydro-meteorological factors. In order to evaluate the CRNP soil moisture data, 12 additional in-situ soil moisture sensors were installed, and spatial representativeness was evaluated through a temporal stability analysis. The neutrons generated by CRNP were found to be about 1,087 counts per hour on average, which was lower than that of the Solmacheon observation station, indicating that the Hongcheon observation station has a more humid environment. Soil moisture was estimated through neutron correction and early-stage calibration of the observed neutron data. The CRNP soil moisture data showed a high correlation with r=0.82 and high accuracy with root mean square error=0.02 m3/m3 in validation with in-situ data, even in a short calibration period. It is expected that higher quality soil moisture data production with greater accuracy will be possible after recalibration with the accumulation of annual data reflecting seasonal patterns. These results, together with previous studies that verified the excellence of CRNP soil moisture data, suggest that high-quality soil moisture data can be produced when constructing KOSMOS.

Investigation on the water quality challenges and benefits of buffer zone application to Yongdam reservoir, Republic of Korea (용담호의 홍수터 적용을 위한 문제점 및 이점 조사 연구)

  • Franz Kevin Geronimo;Hyeseon Choi;Minsu Jeon;Lee-Hyung Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.274-283
    • /
    • 2023
  • Buffer zones, an example of nature-based solutions, offer wide range of environmental, social and economic benefits due to their multifunctionality when applied to watershed areas promoting blue-green connectivity. This study evaluated the effects of buffer zone application to the water quality of Yongdam reservoir tributaries. Particularly, the challenges and improvement of the buffer zone design were identified and suggested, respectively. Water and soil samples were collected from a total of six sites in Yongdam reservoir from September 2021 to April 2022. Water quality analyses revealed that among the sites monitored, downstream of Sangjeonmyeon Galhyeonri (SG_W_D2) was found to have the highest concentration for water quality parameters turbidity, total suspended solids (TSS), chemical oxygen demand (COD), total phosphorus (TP) and total nitrogen (TN). This finding was attributed to the algal bloom observed during the sampling conducted in September and October 2021. It was found through the soil analyses that high TN and TP concentrations were also observed in all the agricultural land uses implying that nutrient accumulation in agricultural areas are high. Highest TN concentration was found in the agricultural area of Jeongcheonmyeon Wolpyeongri (JW_S_A) followed by Jucheonmyeon Sinyangri (JS_S_A) while the lowest TN concentration was found in the original soil of Sangjeonmyeon Galhyeonri (SG_S_O). Among the types of buffer zones identified in this study, Type II-A, Type II-B and Type III were found to have blue-green connectivity. However, initially, blue-green connectivity in these buffer zone types were not considered leading to poor design and poor performance. As such, improvement in the design considering blue-green network and renovation must be considered to optimize the performance of these buffer zones. The findings in this study is useful for designing buffer zones in the future.

Verification of International Trends and Applicability in the Republic of Korea for a Greenhouse Gas Inventory in the Grassland Biomass Sector (초지 바이오매스 부문 온실가스 인벤토리 구축을 위한 국제 동향과 국내 적용 가능성 평가)

  • Sle-gee Lee;Jeong-Gwan Lee;Hyun-Jun Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.4
    • /
    • pp.257-267
    • /
    • 2023
  • The grassland section of the greenhouse gas inventory has limitations due to a lack of review and verification of biomass compared to organic carbon in soil while grassland is considered one of the carbon storages in terrestrial ecosystems. Considering the situation at internal and external where the calculation of greenhouse gas inventory is being upgraded to a method with higher scientific accuracy, research on standards and methods for calculating carbon accumulation of grassland biomass is required. The purpose of this study was to identify international trends in the calculation method of the grassland biomass sector that meets the Tier 2 method and to conduct a review of variables applicable to the Republic of Korea. Identify the estimation methods and access levels for grassland biomass through the National Inventory Report in the United Nations Framework Convention on Climate Change and type the main implications derived from overseas cases. And, a field survey was conducted on 28 grasslands in the Republic of Korea to analyse the applicability of major issues. Four major international issues regarding grassland biomass were identified. 1) country-specific coefficients by land use; 2) calculations on woody plants; 3) loss and recovery due to wildfire; 4) amount of change by human activities. As a result of field surveys and analysis of activity data available domestically, it was found that there was a significant difference in the amount of carbon in biomass according to use type classification and climate zone-soil type classification. Therefore, in order to create an inventory of grassland biomass at the Tier 2 level, a policy and institutional system for making activity data should develop country-specific coefficients for climate zones and soil types.

Contaminant Mechanism and Management of Tracksite of Pterosaurs, Birds, and Dinosaurs in Chungmugong-dong, Jinju, Korea (천연기념물 진주 충무공동 익룡·새·공룡발자국 화석산지의 오염물 형성 메커니즘과 관리방안)

  • Myoungju Choie;Sangho Won;Tea Jong Lee;Seong-Joo Lee;Dal-Yong Kong;Myeong Seong Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.715-728
    • /
    • 2023
  • Tracksite of pterosaurs, birds, and dinosaurs in Chungmugong-dong in Jinju was designated as a natural monument in 2011 and is known as the world's largest in terms of the number and density of pterosaur footprints. This site has been managed by installing protection buildings to conserve in 2018. About 17% of the footprints of pterosaur, theropod, and ornithopod in this site under management in the 2nd protection building are of great academic value, but observation of footprints has difficulties due to continuous physical and chemical damage. In particular, the accumulation of milk-white contaminants is formed by the gypsum and air pollutant complex. Gypsum remains evaporated with a plate or columnar shape in the process of water circulation around the 2nd protection building, and the dust is from through the inflow of the gallery windows. The aqueous solution of gypsum, consisting of calcium from the lower bed and sulfur from grass growth, is catchmented into the groundwater from the area behind the protection building. Pollen and a few minerals other constituents of contaminants, go through the gallery window, which makes it difficult to expel dust. To conserve the fossil-bearing beds from two contaminants of different origins, controlling the water and atmospheric circulation of the 2nd protection building and removing the contaminants continuously is necessary. When cleaning contaminants, the steam cleaning method is sufficiently effective for powder-shaped milk-white contaminants. The fossil-bearing bed consists of dark gray shale with high laser absorption power; the laser cleaning method accompanies physical loss to fossils and sedimentary structures; therefore, avoiding it as much as possible is desirable.

Effects of autumn olive berry extract on insulin resistance and non-alcoholic fatty liver in high fructose-fed rat (고과당식이를 급여한 흰쥐에 있어서 토종보리수 추출물의 인슐린 저항성 및 비알콜성 지방간 개선 효과)

  • Ha-Neul Choi;Jihye Choi;Jung-In Kim
    • Journal of Nutrition and Health
    • /
    • v.56 no.6
    • /
    • pp.629-640
    • /
    • 2023
  • Purpose: Non-alcoholic fatty liver disease (NAFLD) is characterized by the accumulation of fat in the liver which is not a result of excessive alcohol consumption. Its global prevalence was estimated to be approximately 32% in the years 1994-2019. More than half of obese individuals and patients with diabetes are reported to have NAFLD as a comorbidity. This study aimed to investigate the impact of the autumn olive (Elaeagnus umbellata Thunb.) berry on insulin resistance and steatosis in rats fed a high-fructose diet. Methods: Six-week-old Wistar rats were divided into four groups. The control group received a diet consisting of 65% corn starch, while the fructose and experimental groups were fed a diet comprising 65% fructose (FRU) and an FRU diet containing 0.5% (low-dose autumn olive berry group; LAO) or 1.0% (high-dose autumn olive berry group; HAO) ethanol extract of autumn olive berry, respectively, for 10 weeks. Results: The HAO group exhibited significantly lower blood glucose levels compared to the fructose-fed group. Both the LAO and HAO groups showed a substantial reduction in serum insulin levels and insulin resistance when compared to the fructose-fed group. The consumption of LAO and HAO significantly ameliorated dyslipidemia and reduced the levels of triglycerides in the liver compared to the fructose-fed group. Additionally, the consumption of HAO resulted in lower serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities compared to the fructose group. The hepatic expression of the sterol regulatory element-binding protein-1c (SREBP-1c) and carbohydrate-responsive element-binding protein (ChREBP) was significantly reduced in the LAO and HAO groups compared to the fructose group. Conclusion: Autumn olive berries improved steatosis by ameliorating insulin resistance and down-regulating the lipogenesis proteins in rats fed on high fructose diet.

High-Resolution Paleoproductivity Change in the Central Region of the Bering Sea Since the Last Glaciation (베링해 중부 지역의 마지막 빙하기 이후 고생산성의 고해상 변화)

  • Kim, Sung-Han;Khim, Boo-Keun;Shin, Hye-Sun;Uchida, Masao;Itaki, Takuya;Ohkushi, Kenichi
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.3
    • /
    • pp.134-144
    • /
    • 2009
  • Paleoproductivity changes in the central part of the Bering Sea since the last glacial period were reconstructed by analyzing opal and total organic carbon (TOC) content and their mass accumulation rate (MAR) in sediment core PC23A. Ages of the sediment were determined by both AMS $^{14}C$ dates using planktonic foraminifera and Last Appearance Datum of radiolaria (L. nipponica sakaii). The core-bottom age was calculated to reach back to 61,000 yr BP. and some of core-top was missing. Opal and TOC contents during the last glacial period varied in a range of 1-10% and 0.2-1.0%, and their average values are 5% and 0.7%, respectively. In contrast, during the last deglaciation, opal and TOC contents varied from 5 to 22% and from 0.8 to 1.2%, respectively, with increasing average values of 8% and 1.0%. Opal and TOC MAR were low ($1gcm^{-2}kyr^{-1}$, $0.2gcm^{-2}kyr^{-1}$) during the last glacial period, but they increased (>5 and >$1gcm^{-2}kyr^{-1}$) during the last deglaciation. High diatom productivity during the last deglaciation was most likely attributed to the elevated nutrient supply to the sea surface resulting from increased melt water input from the nearby land and enhanced Alaskan Stream injection from the south under the restricted sea-ice and warm condition during the rising sea level. On the contrary, low productivity during the last glacial period was mainly due to decreased Alaskan Stream injection during the low sea-level condition as well as to extensive development of sea ice under low-temperature seawater and cold environment.

Assessment of Methane Production Rate Based on Factors of Contaminated Sediments (오염퇴적물의 주요 영향인자에 따른 메탄발생 생성률 평가)

  • Dong Hyun Kim;Hyung Jun Park;Young Jun Bang;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.45-59
    • /
    • 2023
  • The global focus on mitigating climate change has traditionally centered on carbon dioxide, but recent attention has shifted towards methane as a crucial factor in climate change adaptation. Natural settings, particularly aquatic environments such as wetlands, reservoirs, and lakes, play a significant role as sources of greenhouse gases. The accumulation of organic contaminants on the lake and reservoir beds can lead to the microbial decomposition of sedimentary material, generating greenhouse gases, notably methane, under anaerobic conditions. The escalation of methane emissions in freshwater is attributed to the growing impact of non-point sources, alterations in water bodies for diverse purposes, and the introduction of structures such as river crossings that disrupt natural flow patterns. Furthermore, the effects of climate change, including rising water temperatures and ensuing hydrological and water quality challenges, contribute to an acceleration in methane emissions into the atmosphere. Methane emissions occur through various pathways, with ebullition fluxes-where methane bubbles are formed and released from bed sediments-recognized as a major mechanism. This study employs Biochemical Methane Potential (BMP) tests to analyze and quantify the factors influencing methane gas emissions. Methane production rates are measured under diverse conditions, including temperature, substrate type (glucose), shear velocity, and sediment properties. Additionally, numerical simulations are conducted to analyze the relationship between fluid shear stress on the sand bed and methane ebullition rates. The findings reveal that biochemical factors significantly influence methane production, whereas shear velocity primarily affects methane ebullition. Sediment properties are identified as influential factors impacting both methane production and ebullition. Overall, this study establishes empirical relationships between bubble dynamics, the Weber number, and methane emissions, presenting a formula to estimate methane ebullition flux. Future research, incorporating specific conditions such as water depth, effective shear stress beneath the sediment's tensile strength, and organic matter, is expected to contribute to the development of biogeochemical and hydro-environmental impact assessment methods suitable for in-situ applications.

Optimal Monetary Policy System for Both Macroeconomics and Financial Stability (거시경제와 금융안정을 종합 고려한 최적 통화정책체계 연구)

  • Joonyoung Hur;Hyoung Seok Oh
    • KDI Journal of Economic Policy
    • /
    • v.46 no.1
    • /
    • pp.91-129
    • /
    • 2024
  • The Bank of Korea, through a legal amendment in 2011 following the financial crisis, was entrusted with the additional responsibility of financial stability beyond its existing mandate of price stability. Since then, concerns have been raised about the prolonged increase in household debt compared to income conditions, which could constrain consumption and growth and increase the possibility of a crisis in the event of negative economic shocks. The current accumulation of financial imbalances suggests a critical period for the government and central bank to be more vigilant, ensuring it does not impede the stable flow of our financial and economic systems. This study examines the applicability of the Integrated Inflation Targeting (IIT) framework proposed by the Bank for International Settlements (BIS) for macro-financial stability in promoting long-term economic stability. Using VAR models, the study reveals a clear increase in risk appetite following interest rate cuts after the financial crisis, leading to a rise in household debt. Additionally, analyzing the central bank's conduct of monetary policy from 2000 to 2021 through DSGE models indicates that the Bank of Korea has operated with a form of IIT, considering both inflation and growth in its policy decisions, with some responsiveness to the increase in household debt. However, the estimation of a high interest rate smoothing coefficient suggests a cautious approach to interest rate adjustments. Furthermore, estimating the optimal interest rate rule to minimize the central bank's loss function reveals that a policy considering inflation, growth, and being mindful of household credit conditions is superior. It suggests that the policy of actively adjusting the benchmark interest rate in response to changes in economic conditions and being attentive to household credit situations when household debt is increasing rapidly compared to income conditions has been analyzed as a desirable policy approach. Based on these findings, we conclude that the integrated inflation targeting framework proposed by the BIS could be considered as an alternative policy system that supports the stable growth of the economy in the medium to long term.

Carbon and Nitrogen Inputs from Litterfall Components in Cryptomeria japonica and Chamaecyparis obtusa Plantations (삼나무와 편백 조림지의 낙엽·낙지에 의한 탄소 및 질소유입량)

  • Heejung Park;Gyeongwon Baek;Choonsig Kim
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.97-106
    • /
    • 2024
  • Evaluating carbon (C) and nitrogen (N) inputs from litterfall is important for soil nutrient management to enhance forest productivity and to understand the mechanisms of nutrient cycling in forest ecosystems. This study was conducted to compare C and N inputs from litterfall components of Cryptomeria japonica D. Don an d Chamaecyparis obtusa Endlicher planted in adjacent sites in the Jinju Research and Experimental Forests in Gyeongsangnam-do, South Korea. Litterfall into litter traps was collected at three-month intervals between December 2020 and December 2021, and the C and N concentrations of the litterfall components were measured. Litterfall amounts were not significantly different between the plantations, except for reproductive litterfall components. Litterfall accumulation peaked between December and March. The litterfall C concentration in the needle and seed litterfall was significantly higher for C. obtusa than for C. japonica. By contrast, the C concentrations in needle and flower litterfall differed seasonally. The mean N concentration of needle litterfall was significantly higher in C. japonica (0.96%) and C. obtusa collected between June and September (1.01%) than in the other seasons (C. japonica: 0.43%; C. obtusa: 0.53%). Carbon and N inputs in both plantations were highest in needle litterfall collected from December to March and lowest in needle litterfall collected from June to September. Annual C input by litterfall was similar between the plantations (C. japonica: 3,054 kg C ha-1 yr-1; C. obtusa: 3,129 kg C ha-1 yr-1), whereas total N input was higher for C. japonica (46.93 kg N ha-1 yr-1) than for C. obtusa (25.17 kg N ha-1 yr-1). The higher N input in the C. japonica plantation than in the C. obtusa plantation was associated with the input of reproductive components. These results could be applied to improve stand-scale models of C and N cycling by litterfall components in C. japonica an d C. obtusa plantations.