• Title/Summary/Keyword: accident-free

Search Result 147, Processing Time 0.023 seconds

Evaluation of Reactor Internals Integrity due to 5.5m Concentric Free Fall of KSNP+ Reactor Vessel Closure Head (KSNP+ 원자로덮개 5.5m 수직 낙하 시 원자로내부구조물 건전성 평가)

  • Namgyng, Ihn;Jeong, Seung-Ha;Lee, Dae-Hee;Choi, Taek-Sang
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1358-1363
    • /
    • 2003
  • Due to the application of Integrated Head Assembly (IHA) in KSNP+ reactor design, an investigation of reactor internals integrity is carried out to assure that the adoption of IHA does not affect the safety of reactor operation. One of the postulated accident events is the R.V. closure head fall from 5.5m high directly above the reactor vessel that may occur during the refueling operation. The analysis model consists of lumped mass elements of the entire reactor vessel and internals. Because of extreme load, separate elastic-plastic analyses are done for the members that undergo plastic deformation. The analysis verified that the stresses of the reactor internals and the fuel assemblies are within the bound of allowable stress limits and the integrity of the fuel assemblies is maintained.

  • PDF

Perforator Based Tibialis Anterior Segmental Muscle Island Flap in Lower Extremity Reconstruction

  • Byun, Il Hwan;Kwon, Soon Sung;Chung, Seum;Baek, Woo Yeol
    • Archives of Reconstructive Microsurgery
    • /
    • v.25 no.2
    • /
    • pp.69-71
    • /
    • 2016
  • Reconstruction of the lower extremities is difficult due to a lack of skin laxity and muscular tissues. Here, we present a case of lower extremity reconstruction via the anterior tibial artery perforator based segmental muscle island flap. Our patient was a 75-year-old male with a chronic ulcerative wound on the right lower leg from an old car accident. A $5.0{\times}0.5cm$ size ulcerative wound with tibial bone exposure was noted. We planned to reconstruct the lower extremity defect with a free flap, but the vessel status was severely compromised intraoperatively. Thus, we found the anterior tibial artery perforator using Doppler ultrasound, elevated the tibialis anterior muscle segment flap, and transposed it to cover the defect successfully. The flap presented with a nice contour and the skin graft covering the flap survived completely. There were no complications of the surgical site at three months follow-up and no gait morbidity. This is a meaningful case applying the concept of segmental muscle flap based on a perforator that had advantages including proper bulkiness, vascularization, and preservation of function, which were well applied, leading to great success.

GOTHIC-3D APPLICABILITY TO HYDROGEN COMBUSTION ANALYSIS

  • LEE JUNG-JAE;LEE JIN-YONG;PARK GOON-CHERL;LEE BYUNG-CHUL;YOO HOJONG;KIM HYEONG-TAEK;OH SEUNG-JONG
    • Nuclear Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.265-272
    • /
    • 2005
  • Severe accidents in nuclear power plants can cause hydrogen-generating chemical reactions, which create the danger of hydrogen combustion and thus threaten containment integrity. For containment analyses, a three-dimensional mechanistic code, GOTHIC-3D has been applied near source compartments to predict whether or not highly reactive gas mixtures can form during an accident with the hydrogen mitigation system working. To assess the code applicability to hydrogen combustion analysis, this paper presents the numerical calculation results of GOTHIC-3D for various hydrogen combustion experiments, including FLAME, LSVCTF, and SNU-2D. In this study, a technical base for the modeling oflarge- and small-scale facilities was introduced through sensitivity studies on cell size and bum modeling parameters. Use of a turbulent bum option of the eddy dissipation concept enabled scale-free applications. Lowering the bum parameter values for the flame thickness and the bum temperature limit resulted in a larger flame velocity. When applied to hydrogen combustion analysis, this study revealed that the GOTHIC-3D code is generally able to predict the combustion phenomena with its default bum modeling parameters for large-scale facilities. However, the code needs further modifications of its bum modeling parameters to be applied to either small-scale facilities or extremely fast transients.

A Study of Temporary Residence for Disaster Suffers and Development (재난${\cdot}$재해 이재민을 위한 임시주거개발의 필요성에 관한 연구)

  • Lee, Kang-Bok;Kim, Ki-Hyung;Lee, Myung-Sik
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2005.05a
    • /
    • pp.93-97
    • /
    • 2005
  • People can't be free from the panic of flood, war and terrorism which could be fatal for people's life and property in modern society. It is the most important thing that provide food and residence for suffers in disaster areas. When disaster occurred, the emergency public facilities would be the first place that the people stay. However, these also could be destroyed by disaster. In that case, emergency tents or containers could be the major residence for disaster suffers. Because the only concern for planning temporary residence is the matter of supply and efficiency, it is no longer useful after the disaster end. Therefore, temporary residence as well as general residence should be on the basis of social and cultural factors as well as basic and physiological factors. It is very crucial to study the model of temporary residence. It could be the fundamental and necessary for the human being in order to prepare the natural disaster and grand scale accident. The main purpose for this study is examining the temporary residence that satisfy the fundamental, social and cultural factors for disaster sufferers.

  • PDF

Intelligent Position Control of a Vertical Rotating Single Arm Robot Using BLDC Servo Drive

  • Manikandan, R.;Arulmozhiyal, R.
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.205-216
    • /
    • 2016
  • The manufacturing sector resorts to automation to increase production and homogeneity of products during mass production, without increasing scarce, expensive, and unreliable manpower. Automation in the form of multiple robotic arms that handle materials in all directions in different stages of the process is proven to be the best way to increase production. This paper thoroughly investigates robotic single-arm movements, that is, 360° vertical rotation, with the help of a brushless DC motor, controlled by a fuzzy proportional-integral-derivative (PID) controller. This paper also deals with the design and performance of the fuzzy-based PID controller used to control vertical movement against the limited scope of conventional PID feedback controller and how the torque of the arm is affected by the fuzzy PID controller in the four quadrants to ensure constant speed and accident-free operation despite the influence of gravitational force. The design was simulated through MATLAB/SIMULINK and integrated with dSPACE DS1104-based hardware to verify the dynamic behaviors of the arm.

Application of Best Estimate Approach for Modelling of QUENCH-03 and QUENCH-06 Experiments

  • Kaliatka, Tadas;Kaliatka, Algirdas;Vileiniskis, Virginijus
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.419-433
    • /
    • 2016
  • One of the important severe accident management measures in the Light Water Reactors is water injection to the reactor core. The related phenomena are investigated by performing experiments and computer simulations. One of the most widely known is the QUENCH test-program. A number of analyses on QUENCH tests have also been performed by different computer codes for code validation and improvements. Unfortunately, any deterministic computer simulation is not free from the uncertainties. To receive the realistic calculation results, the best estimate computer codes should be used for the calculation with combination of uncertainty and sensitivity analysis of calculation results. In this article, the QUENCH-03 and QUENCH-06 experiments are modelled using ASTEC and RELAP/SCDAPSIM codes. For the uncertainty and sensitivity analysis, SUSA3.5 and SUNSET tools were used. The article demonstrates that applying the best estimate approach, it is possible to develop basic QUENCH input deck and to develop the two sets of input parameters, covering maximal and minimal ranges of uncertainties. These allow simulating different (but with the same nature) tests, receiving calculation results with the evaluated range of uncertainties.

A Study on the Safety Operational Envelope of a Submarine in Jamming (잠수함의 제어판 재밍에 대한 안전운항영역 설정)

  • Park, Jong-Yong;Kim, Nakwan;Shin, Yong-Ku
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.301-311
    • /
    • 2017
  • Safety operational envelope (SOE) is the area which guarantees the safety of a submarine from the accident such as jamming and flooding. The maximum safe depth is set to prevent the damage to the hull from increasing water pressure with depth. A minimum safety depth is set to prevent a submarine from the exposure above the free surface and collision against surface ship. The prediction method for the SOE in the design phase is needed to operate the submarine safely. In this paper, the modeling and calculation methods of the SOE are introduced. Main ballast tank blowing modeling and propeller force modeling are conducted to simulate the accidents and the recovery process. The SOEs are established based on the crash stop and emergency rising maneuver simulation. From the simulation results, it can be known that the emergency rising maneuver is more effective recovery action than the crash stop.

Parametric study on the structural response of a high burnup spent nuclear fuel rod under drop impact considering post-irradiated fuel conditions

  • Almomani, Belal;Kim, Seyeon;Jang, Dongchan;Lee, Sanghoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1079-1092
    • /
    • 2020
  • A parametric study of several parameters relevant to design safety on the spent nuclear fuel (SNF) rod response under a drop accident is presented. In the view of the complexity of interactions between the independent safety-related parameters, a factorial design of experiment is employed as an efficient method to investigate the main effects and the interactions between them. A detailed single full-length fuel rod is used with consideration of post-irradiated fuel conditions under horizontal and vertical free-drops onto an unyielding surface using finite-element analysis. Critical drop heights and critical g-loads that yield the threshold plastic strain in the cladding are numerically estimated to evaluate the fuel rod structural resistance to impact load. The combinatory effects of four uncertain parameters (pellet-cladding interfacial bonding, material properties, spacer grid stiffness, rod internal pressure) and the interactions between them on the fuel rod response are investigated. The principal finding of this research showed that the effects of above-mentioned parameters on the load-carrying capacity of fuel rod are significantly different. This study could help to prioritize the importance of data in managing and studying the structural integrity of the SNF.

Improvements for Successful Mooring of Ocean Buoys (성공적인 해양부이 계류를 위한 개선 방안)

  • Jung, Dawoon;Park, Joonseong;Song, Kyu-Min
    • Ocean and Polar Research
    • /
    • v.43 no.3
    • /
    • pp.193-203
    • /
    • 2021
  • In-situ experiment using ocean buoys is a direct ocean observation and has been playing an important role from the past to the present based on high reliability. The ocean buoy is operated more stable than before due to the technological development of communication (GPS, satellite, …) and equipment, but still moored buoys are not free from various accidents occurring in the ocean. Nevertheless, there is currently a lack of countermeasures or manuals about mooring accidents. Therefore, in this study, based on the experience of operating buoys conducted for many years, the advantages and disadvantages of ocean buoys according to size were analyzed. and legal procedures before and after buoy mooring were presented to enhance the use of buoys. And it is suggested to realize successful experiment by proposing considerations before mooring the buoy in preparation for an accident.

A Study on a Quality Characteristics of Pressure Leak Test of Process Piping for Offshore Plant (해양플랜트 프로세스 배관 Pressure Leak Test의 품질 특성에 관한 연구)

  • Park, Chang-Soo;Kim, Hyungwoo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.429-437
    • /
    • 2018
  • The process gas piping of the offshore plant can cause a massive explosion if the gas leakage occurs during operation. For the purpose of precaution of gas leakage accident, an air pressure test is performed on the process equipment tests using a test pump as much as the power to the piping inner side, mix 99% nitrogen gas and 1% helium gas. The purpose of the air pressure test is to check the work conformity process by handling and regulation for initial piping process, assembly, installation of module, welding, center alignment of the pipes assembling flange gasket in an unrestrained free state. In this paper, the regulation of the problematic air pressure test was analyzed and the solution criteria were established. And leakage tests of existing equipment were performed applying these solution methods. As a result, it was confirmed that there was no problem.