• Title/Summary/Keyword: accident rate model

Search Result 229, Processing Time 0.023 seconds

Experimental investigation of aerosols removal efficiency through self-priming venturi scrubber

  • Ali, Suhail;Waheed, Khalid;Qureshi, Kamran;Irfan, Naseem;Ahmed, Masroor;Siddique, Waseem;Farooq, Amjad
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2230-2237
    • /
    • 2020
  • Self-priming venturi scrubber is one of the most effective devices used to collect aerosols and soluble gas pollutants from gaseous stream during severe accident in a nuclear power plant. The present study focuses on investigation of dust particle removal efficiency of the venturi scrubber both experimentally and theoretically. Venturi scrubber captures the dust particles in tiny water droplets flowing into it. Inertial impaction is the main mechanism of particles collection in venturi scrubber. The water injected into venturi throat is in the form of jets through multiple holes present at venturi throat. In this study, aerosols removal efficiency of self-priming venturi scrubber was experimentally measured for different operating conditions. Alumina (Al2O3) particles with 0.4-㎛ diameter and 3950 kg/㎥ density were treated as aerosols. Removal efficiency was calculated for different gas flow rates i.e. 3-6 ㎥/h and liquid flow rates i.e. 0.009-0.025 ㎥/h. Experimental results depict that aerosols removal efficiency increases with the increase in throat velocity and liquid head. While at lower air flow rate of 3 ㎥/h, removal efficiency decreases with the increase in liquid head. A theoretical model of venturi scrubber was also employed and experimental results were compared with mathematical model. Experimental results are found to be in good agreement with theoretical results.

Development of Risk Assesment Index for Construction Safety Using Statistical Data (통계자료를 활용한 건설안전 위험도 평가지수 개발)

  • Park, Hwan-Pyo;Han, Jae-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.361-371
    • /
    • 2019
  • In 2017, the ratio of the number of victims and deaths in the construction industry was the highest with 25.2% and 29.6%, respectively. Especially, as safety accidents at construction sites continue to increase, the economic loss is greatly increased too. Therefore, in order to prevent safety accidents in the construction work, the safety risk assessment index by type of construction was developed, and the main results of this study are as follows. First, 17 factors related to safety accidents at construction sites were derived through survey and interview survey, and this study suggested 9 items(process, type of construction, progress rate, contract amount, number of floors, safety education, working days and weather) throughout the expert advisory meeting. Second, the risk assessment index for safety accidents was developed based on the ratio and intensity of safety accidents. Third, to verify the risk assessment model, the construction safety risk assessment index by type of construction was derived by surveying and analyzing the statistics of the construction accident. In addition, the risk strength was calculated by dividing human damage caused by construction safety accidents into those killed and injured. The risk assessment index based on the frequency and intensity of safety accidents by type of construction is expected to be utilized as basic data when assessing the risk of similar projects in the future.

Risk Analysis using Construction Insurance Claim Payouts (건설공사보험 피해 보상금 지급액을 활용한 리스크 분석)

  • Yu, Yeong-Jin;Son, Kiyoung;Kim, Ji-Myong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.349-357
    • /
    • 2016
  • Recently, the quantity of risk in construction project has been inflated due to the fact that current construction projects have been large and complicated. Therefore, a study on the risk management methods is necessary that can predict and respond to the need in complicated modern construction projects. In this study, the objective is to analyze the cause of accident in actual construction sites and develop a risk assessment model based on insurance claims records. To reach the goal of this study, first, the frequency and severity of accidents are analyzed the causes of accidents based on the classification; progress rate, season, and total construction costs. Second, a risk assessment model is developed by utilizing a multiple regression analysis. The dependent variable is loss ratio of material damage and three categories; natural hazards, geographic information, and construction method & ability, are used as the independent variables. The model's adjusted R-square is 0.455. The contributions of this study will be used as a material for a quantitative risk analysis model development and review of the construction risk factors for future study.

A Study on Improving the Efficiency of the Survival Rate for the Offshore Accommodation Barge Resident Using Fire Dynamic Simulation (화재시뮬레이션을 이용한 해양플랜트 전용생활부선 거주자의 생존율 향상에 대한 연구)

  • Kim, Won-Ouk;Lee, Chang-Hee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.689-695
    • /
    • 2015
  • The offshore plant crews that were commissioned in the commercial startup phase boarded the offshore plant in two shifts until the end of the project. The crews who were hired by the owner side stayed in the original offshore plant during the project. However, most of the offshore plant commissioned members who were dispatched from the shipyard were accommodated in the offshore accommodation barge. For this reason, they were exposed to many accidents since there are a lot of people staying in a small space. This study suggested a method for improving survival rate at offshore accommodation barge in terms of life safety. It is assumed that the fire accident among unfortunate events which take place in the offshore accommodation barge mainly occurred. So, this study analyzed the safety evacuation for offshore plant employees using fire simulation model based on both domestic and international law criteria. In particular, When fire occurs in the offshore accommodation barge, the periodically well trained crews are followed safety evacuation procedure. whereas many employees who have different background such as various occupations, cultural differences, races and nationality can be commissioned with improper evacuation behaviors. As a result, the risk will be greater than normal situation due to these inappropriate behaviors. Therefore, This study analyzed the Required Safe Escape Time (RSET) and Available Safe Escape Time (ASET). Also it was suggested the improvement of structure design and additional arrangement of safety equipment to improve the survival rate of the residents in offshore accommodation barge.

A Study on the Radiation Source Effect to the Radiation Shielding Analysis for a Spent-Fuel Cask Design with Burnup-Credit (연소도이득효과를 적용한 사용후핵연료 수송용기의 방사선원별 차폐영향 분석)

  • Kim, Kyung-O;Kim, Soon-Young;Ko, Jae-Hoon;Lee, Gang-Ug;Kim, Tae-Man;Yoon, Jeong-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.73-80
    • /
    • 2011
  • The radiation shielding analysis for a Burnup-credit (BUC) cask designed under the management of Korea Radioactive Waste Management Corporation (KRMC) was performed to examine the contribution of each radiation source affecting dose rate distribution around the cask. Various radiation sources, which contain neutron and gamma-ray sources placed in active fuel region and the activation source, and imaginary nuclear fuel were all considered in the MCNP calculation model to realistically simulate the actual situations. It was found that the maximum external and surface dose rates of the spent fuel cask were satisfied with the domestic standards both in normal and accident conditions. In normal condition, the radiation dose rate distribution around the cask was mainly influenced by activation source ($^{60}Co$ radioisotope); in another case, the neutron emitted in active fuel region contributed about 90% to external dose rate at 1m distance from side surface of the cask. Besides, the contribution level of activation source was dramatically increased to the dose rates in top and bottom regions of the cask. From this study, it was recognized that the detailed investigation on the radiation sources should be performed conservatively and accurately in the process of radiation shielding analysis for a BUC cask.

Demographic characteristics of patients admitted to the emergency department for intoxication and a time series analysis during the COVID-19 period (중독으로 응급의료센터에 내원한 환자의 일반적 특성 연구 및 코로나바이러스감염증-19 유행 기간의 시계열 분석 연구)

  • Bongmin Son;Nayoon Kang;Eunah Han;Gina Yu;Junho Cho;Jaiwoog Ko;Taeyoung Kong;Sung Phil Chung;Minhong Choa
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.21 no.2
    • /
    • pp.92-107
    • /
    • 2023
  • Purpose: This study investigated the characteristics and treatment outcomes of patients who visited the emergency department due to intoxication and analyzed the impact of the coronavirus disease 2019 (COVID-19) pandemic on their visits. Methods: A retrospective study was conducted using data from the National Emergency Department Information System (NEDIS) on patients who visited the emergency department due to intoxication between January 2014 and December 2020. In total, 277,791 patients were included in the study, and their demographic and clinical data were analyzed. A model was created from 2014 to 2019 and applied to 2020 (i.e., during the COVID-19 pandemic) to conduct a time series analysis distinguishing between unexpected accidents and suicide/self-harm among patients who visited the emergency department. Results: The most common reason for visiting the emergency department was unintentional accidents (48.5%), followed by self-harm/suicide attempts (43.8%). Unexpected accident patients and self-harm/suicide patients showed statistically significant differences in terms of sex, age group, hospitalization rate, and mortality rate. The time series analysis showed a decrease in patients with unexpected accidents during the COVID-19 pandemic, but no change in patients with suicide/self-harm. Conclusion: Depending on the intentionality of the intoxication, significant differences were found in the age group, the substance of intoxication, and the mortality rate. Therefore, future analyses of patients with intoxication should be stratified according to intentionality. In addition, the time series analysis of intentional self-harm/suicide did not show a decrease in 2010 in the number of patients, whereas a decrease was found for unintentional accidents.

DEVELOPMENT OF A SUPERCRITICAL CO2 BRAYTON ENERGY CONVERSION SYSTEM COUPLED WITH A SODIUM COOLED FAST REACTOR

  • Cha, Jae-Eun;Lee, Tae-Ho;Eoh, Jae-Hyuk;Seong, Sung-Hwan;Kim, Seong-O;Kim, Dong-Eok;Kim, Moo-Hwan;Kim, Tae-Woo;Suh, Kyun-Yul
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1025-1044
    • /
    • 2009
  • Systematic research has been conducted by KAERI to develop a supercritical carbon dioxide Brayton cycle energy conversion system coupled with a sodium cooled fast reactor. For the development of the supercritical $CO_2$ Brayton cycle ECS, KAERI researched four major fields, separately. For the system development, computer codes were developed to design and analyze the supercritical $CO_2$ Brayton cycle ECS coupled with the KALIMER-600. Computer codes were developed to design and analyze the performance of the major components such as the turbomachinery and the high compactness PCHE heat exchanger. Three dimensional flow analysis was conducted to evaluate their performance. A new configuration for a PCHE heat exchanger was developed by using flow analysis, which showed a very small pressure loss compared with a previous PCHE while maintaining its heat transfer rate. Transient characteristics for the supercritical $CO_2$ Brayton cycle coupled with KALIMER-600 were also analyzed using the developed computer codes. A Na-$CO_2$ pressure boundary failure accident was analyzed with a computer code that included a developed model for the Na-$CO_2$ chemical reaction phenomena. The MMS-LMR code was developed to analyze the system transient and control logic. On the basis of the code, the system behavior was analyzed when a turbine load was changed. This paper contains the current research overview of the supercritical $CO_2$ Brayton cycle coupled to the KALIMER-600 as an alternative energy conversion system.

Method for Designing VMS Messages Based on Drivers' Legibility Performance (운전자 판독능력을 고려한 VMS 메시지 설계 방법론 개발 및 적용)

  • Kim, Seong-Min;O, Cheol;Jang, Myeong-Sun;Kim, Tae-Hyeong
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.3
    • /
    • pp.99-109
    • /
    • 2007
  • Variable message signs (VMS), which are used for providing real-time information on traffic conditions and accident occurrences, are one of the important components of intelligent transportation systems VMS messages need to meet human factor requirements: messages should be readable and understandable while driving. Lab-controlled experiments on VMS messages were conducted to obtain useful data for analyzing drivers' responsive characteristics for VMS messages. Binary logistic regression (BLR) modeling techniques were applied to explore the relationships among drivers' message perceptions, message reading time, and amount of VMS messages. Probabilistic outcomes of the proposed BLR-based perception model could be greatly utilized to design VMS messages considering drivers' legibility performance. The major contribution of this study is to develop invaluable statistical models that can be used in designing VMS messages more effectively from the human factor point of view. The results could be further applied to establish the scheme of VMS message phase and duration.

The Effects of Agent Orange in Patient with Pneumonia (고엽제 노출이 폐렴의 치료 결과에 미치는 영향)

  • Kim, Dong Sung;Lee, Jungyoup;Kye, Yu Chan;Jung, Euigi;Jeong, Ki Young
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.18 no.1
    • /
    • pp.26-33
    • /
    • 2020
  • Purpose: Agent Orange (AO) is a herbicide and defoliant used by the United States and its military allies during the Vietnam War. Pneumonia is a common cause of death among Vietnam veterans in our hospital. There have been no previous studies researching any association between AO exposure and the prognosis for pneumonia. The primary objective of this study was to investigate associations between AO exposure and 30-day mortality due to pneumonia. The secondary objective was to examine the clinical factors associated with therapeutic outcomes in veterans with pneumonia, and to assess the prevalence of combined diseases in AO-exposed veterans. Methods: This study retrospectively included veteran patients diagnosed with pneumonia in the emergency department and hospitalized between February 2014 and March 2018. The enrolled patients were grouped according to their defoliant exposure history, and the clinical information of defoliant-exposed and non-defoliant-exposed groups were compared. Patients were divided according to 30-day mortality, and significant factors influencing mortality were evaluated by using univariate analysis and multivariate analysis. The final multivariate model revealed the effect of AO exposure on therapeutic outcomes of pneumonia. Results: A total of 1006 patients were analyzed. Of these, 276 patients had a history of AO exposure, whereas 730 patients had not been exposed. Factors positively associated with 30-day mortality were malignancy, respiratory rate, blood urea nitrogen, and albumin which was negatively associated with mortality. Conclusion: Exposure to defoliant is not associated with 30-day mortality in patients with pneumonia. However, veterans with defoliant exposure are associated with a high prevalence of diabetes mellitus, hypertension, cerebrovascular accident, malignancy, and chronic kidney disease.

Development of Water Demand Forecasting Simulator and Performance Evaluation (단기 물 수요예측 시뮬레이터 개발과 예측 알고리즘 성능평가)

  • Shin, Gang-Wook;Kim, Ju-Hwan;Yang, Jae-Rheen;Hong, Sung-Taek
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.581-589
    • /
    • 2011
  • Generally, treated water or raw water is transported into storage reservoirs which are receiving facilities of local governments from multi-regional water supply systems. A water supply control and operation center is operated not only to manage the water facilities more economically and efficiently but also to mitigate the shortage of water resources due to the increase in water consumption. To achieve the goal, important information such as the flow-rate in the systems, water levels of storage reservoirs or tanks, and pump-operation schedule should be considered based on the resonable water demand forecasting. However, it is difficult to acquire the pattern of water demand used in local government, since the operating information is not shared between multi-regional and local water systems. The pattern of water demand is irregular and unpredictable. Also, additional changes such as an abrupt accident and frequent changes of electric power rates could occur. Consequently, it is not easy to forecast accurate water demands. Therefore, it is necessary to introduce a short-term water demands forecasting and to develop an application of the forecasting models. In this study, the forecasting simulator for water demand is developed based on mathematical and neural network methods as linear and non-linear models to implement the optimal water demands forecasting. It is shown that MLP(Multi-Layered Perceptron) and ANFIS(Adaptive Neuro-Fuzzy Inference System) can be applied to obtain better forecasting results in multi-regional water supply systems with a large scale and local water supply systems with small or medium scale than conventional methods, respectively.