• Title/Summary/Keyword: accident prediction models

Search Result 105, Processing Time 0.025 seconds

Influence of Modelling Approaches of Diffusion Coefficients on Atmospheric Dispersion Factors (확산계수의 모델링방법이 대기확산인자에 미치는 영향)

  • Hwang, Won Tae;Kim, Eun Han;Jeong, Hae Sun;Jeong, Hyo Joon;Han, Moon Hee
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.2
    • /
    • pp.60-67
    • /
    • 2013
  • A diffusion coefficient is an important parameter in the prediction of atmospheric dispersion using a Gaussian plume model, and its modelling approach varies. In this study, dispersion coefficients recommended by the U. S. Nuclear Regulatory Commission's (U. S. NRC's) regulatory guide and the Canadian Nuclear Safety Commission's (CNSC's) regulatory guide, and used in probabilistic accident consequence analysis codes MACCS and MACCS2 have been investigated. Based on the atmospheric dispersion model for a hypothetical accidental release recommended by the U. S. NRC, its influence to atmospheric dispersion factor was discussed. It was found that diffusion coefficients are basically predicted from a Pasquill- Gifford curve, but various curve fitting equations are recommended or used. A lateral dispersion coefficient is corrected with consideration for the additional spread due to plume meandering in all models, however its modelling approach showed a distinctive difference. Moreover, a vertical dispersion coefficient is corrected with consideration for the additional plume spread due to surface roughness in all models, except for the U. S. NRC's recommendation. For a specified surface roughness, the atmospheric dispersion factors showed differences up to approximately 4 times depending on the modelling approach of a dispersion coefficient. For the same model, the atmospheric dispersion factors showed differences by 2 to 3 times depending on surface roughness.

Prediction of Travel Time and Longitudinal Dispersion for Water Pollutant by Using Unit Concentration Response Function (단위오염도틀 이용한 하천 오염물질의 이동시간과 종확산 예측)

  • Kim, Soo-Jun;Kim, Hung-Soo;Kim, Byung-Sik;Seoh, Byung-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.5 s.166
    • /
    • pp.395-403
    • /
    • 2006
  • This study suggests the use of a simple method, called the unit concentration response function(UCRF) for predicting travel time and dispersion of pollutants with the minimum information of study area instead of numerical models which are widely used In the Previous studies. However, the numerical models require time-consuming, tedious effort, and many data sets. So we derive the UCRF using some components such as travel time, peak concentration, and passage time of pollutant etc. We use the regression equation for the estimations of components which were developed from the investigations of many river basins in USA. This study used the regression equaiton for the UCRF to the accident of Dichloromethane leak into the Nakdong River occurred on June 30, 1994 and applied the UCRF for the predictions of travel time and dispersion. The predictions were compared with the results by QUAL2E model. The results by the regression equaiton and QUAL2E model had a good agreement between observed and simulated concentrations. Therefore, the regression equation for the UCRF which can simply estimate travel time and concentration of pollutants showed its applicability for the ungaged basin.

A Study on the Prediction Models of Used Car Prices for Domestic Brands Using Machine Learning (머신러닝을 활용한 브랜드별 국내 중고차 가격 예측 모델에 관한 연구)

  • Seungjun Yim;Joungho Lee;Choonho Ryu
    • Journal of Service Research and Studies
    • /
    • v.13 no.3
    • /
    • pp.105-126
    • /
    • 2023
  • The domestic used car market continues to grow along with the used car online platform service. The used car online platform service discloses vehicle specifications, accident history, inspection history, and detailed options to service consumers. Most of the preceding studies were predictions of used car prices using vehicle specifications and some options for vehicles. As a result of the study, it was confirmed that there was a nonlinear relationship between used car prices and some specification variables. Accordingly, the researchers tried to solve the nonlinear problem by executing a Machine Learning model. In common, the Regression based Machine Learning model had the advantage of knowing the actual influence and direction of variables, but there was a disadvantage of low Cost Function figures compared to the Decision Tree based Machine Learning model. This study attempted to predict used car prices of six domestic brands by utilizing both vehicle specifications and vehicle options. Through this, we tried to collect the advantages of the two types of Machine Learning models. To this end, we sequentially conducted a regression based Machine Learning model and a decision tree based Machine Learning model. As a result of the analysis, the practical influence and direction of each brand variable, and the best tree based Machine Learning model were selected. The implications of this study are as follows. It will help buyers and sellers who use used car online platform services to predict approximate used car prices. And it is hoped that it will help solve the problem caused by information inequality among users of the used car online platform service.

Development of the Accident Prediction Model for Enlisted Men through an Integrated Approach to Datamining and Textmining (데이터 마이닝과 텍스트 마이닝의 통합적 접근을 통한 병사 사고예측 모델 개발)

  • Yoon, Seungjin;Kim, Suhwan;Shin, Kyungshik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.1-17
    • /
    • 2015
  • In this paper, we report what we have observed with regards to a prediction model for the military based on enlisted men's internal(cumulative records) and external data(SNS data). This work is significant in the military's efforts to supervise them. In spite of their effort, many commanders have failed to prevent accidents by their subordinates. One of the important duties of officers' work is to take care of their subordinates in prevention unexpected accidents. However, it is hard to prevent accidents so we must attempt to determine a proper method. Our motivation for presenting this paper is to mate it possible to predict accidents using enlisted men's internal and external data. The biggest issue facing the military is the occurrence of accidents by enlisted men related to maladjustment and the relaxation of military discipline. The core method of preventing accidents by soldiers is to identify problems and manage them quickly. Commanders predict accidents by interviewing their soldiers and observing their surroundings. It requires considerable time and effort and results in a significant difference depending on the capabilities of the commanders. In this paper, we seek to predict accidents with objective data which can easily be obtained. Recently, records of enlisted men as well as SNS communication between commanders and soldiers, make it possible to predict and prevent accidents. This paper concerns the application of data mining to identify their interests, predict accidents and make use of internal and external data (SNS). We propose both a topic analysis and decision tree method. The study is conducted in two steps. First, topic analysis is conducted through the SNS of enlisted men. Second, the decision tree method is used to analyze the internal data with the results of the first analysis. The dependent variable for these analysis is the presence of any accidents. In order to analyze their SNS, we require tools such as text mining and topic analysis. We used SAS Enterprise Miner 12.1, which provides a text miner module. Our approach for finding their interests is composed of three main phases; collecting, topic analysis, and converting topic analysis results into points for using independent variables. In the first phase, we collect enlisted men's SNS data by commender's ID. After gathering unstructured SNS data, the topic analysis phase extracts issues from them. For simplicity, 5 topics(vacation, friends, stress, training, and sports) are extracted from 20,000 articles. In the third phase, using these 5 topics, we quantify them as personal points. After quantifying their topic, we include these results in independent variables which are composed of 15 internal data sets. Then, we make two decision trees. The first tree is composed of their internal data only. The second tree is composed of their external data(SNS) as well as their internal data. After that, we compare the results of misclassification from SAS E-miner. The first model's misclassification is 12.1%. On the other hand, second model's misclassification is 7.8%. This method predicts accidents with an accuracy of approximately 92%. The gap of the two models is 4.3%. Finally, we test if the difference between them is meaningful or not, using the McNemar test. The result of test is considered relevant.(p-value : 0.0003) This study has two limitations. First, the results of the experiments cannot be generalized, mainly because the experiment is limited to a small number of enlisted men's data. Additionally, various independent variables used in the decision tree model are used as categorical variables instead of continuous variables. So it suffers a loss of information. In spite of extensive efforts to provide prediction models for the military, commanders' predictions are accurate only when they have sufficient data about their subordinates. Our proposed methodology can provide support to decision-making in the military. This study is expected to contribute to the prevention of accidents in the military based on scientific analysis of enlisted men and proper management of them.

Development of a Road Hazard Map Considering Meteorological Factors (기상인자를 고려한 도로 위험지도 개발)

  • Kim, Hyung Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.133-144
    • /
    • 2017
  • Recently, weather information is getting closer to our real life, and it is a very important factor especially in the transportation field. Although the damage caused by the abnormal climate changes around the world has been gradually increased and the correlation between the road risk and the possibility of traffic accidents is very high, the domestic research has been performed at the level of basic research. The Purpose of this study is to develop a risk map for the road hazard forecasting service of weather situation by linking real - time weather information and traffic information based on accident analysis data by weather factors. So, we have developed a collection and analysis about related data, processing, applying prediction models in various weather conditions and a method to provide the road hazard map for national highways and provincial roads on a web map. As a result, the road hazard map proposed in this study can be expected to be useful for road managers and users through online and mobile services in the future. In addition, information that can support safe autonomous driving by continuously archiving and providing a risk map database so as to anticipate and preemptively prepare for the risk due to meteorological factors in the autonomous driving vehicle, which is a key factor of the 4th Industrial Revolution, and this map can be expected to be fully utilized.