• Title/Summary/Keyword: accelerometer sensor

Search Result 535, Processing Time 0.029 seconds

The tilt sensing system using serial communication (시리얼 통신을 이용한 기울기 감지 센싱 시스템)

  • Park, Jin-won;Lee, Hong-min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.4
    • /
    • pp.53-58
    • /
    • 2009
  • In recently years, the research and application for sensor has increased in each field. In this paper, the system which can perceive and detect using 3-axis accelerometer sensor and serial communication is proposed. Also, the user has GUI environment for monitor in real-time. In order to reduce unstable data and error defect of electronic rechargeable liquid tilt sensor used digital 3-axis accelerometer sensor which has AD convertor. Therefore, this system provide exact data and a problem of objects for user more easier.

  • PDF

Geometric moire fringe fiber optic accelerometer system for monitoring civil infrastructures (토목 구조물 건전성 평가를 위한 무아레 프린지 기법 광섬유 가속도계 시스템 개발)

  • Kim, Dae-Hyun;Feng, Maria Q.
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.40-46
    • /
    • 2006
  • This paper presents a novel fiber optic accelerometer system for monitoring vibration of large-size structures. The system is composed of one (or multiple) sensor head, a light control unit and a signal processing unit. The sensing mechanism of the sensor head is based on a novel integration of the moire fringe phenomenon with fiber optics to achieve a robust performance in addition to its immunity to EM interference, easy cabling, and low cost. In this paper, a prototype of the fiber optic accelerometer system has been developed successfully. A low-cost light control unit has been developed to drive the system's optic and electronic components. A unique algorithm has also been developed to derive the sensor's acceleration from the raw signals of the light control unit; it is implemented via a separate signal processing unit. Finally, the shaking table tests successfully demonstrate the performance and the potential of the moire fringe fiber optic sensor system to monitor the health of civil infrastructures.

A Study on User Authentication with Smartphone Accelerometer Sensor (스마트폰 가속도 센서를 이용한 사용자 인증 방법 연구)

  • Seo, Jun-seok;Moon, Jong-sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.6
    • /
    • pp.1477-1484
    • /
    • 2015
  • With the growth of financial industry with smartphone, interest on user authentication using smartphone has been arisen in these days. There are various type of biometric user authentication techniques, but gait recognition using accelerometer sensor in smartphone does not seem to develop remarkably. This paper suggests the method of user authentication using accelerometer sensor embedded in smartphone. Specifically, calibrate the sensor data from smartphone with 3D-transformation, extract features from transformed data and do principle component analysis, and learn model with using gaussian mixture model. Next, authenticate user data with confidence interval of GMM model. As result, proposed method is capable of user authentication with accelerometer sensor on smartphone as a high degree of accuracy(about 96%) even in the situation that environment control and limitation are minimum on the research.

Detecting User Activities with the Accelerometer on Android Smartphones

  • Wang, Xingfeng;Kim, Heecheol
    • Journal of Multimedia Information System
    • /
    • v.2 no.2
    • /
    • pp.233-240
    • /
    • 2015
  • Mobile devices are becoming increasingly sophisticated and the latest generation of smartphones now incorporates many diverse and powerful sensors. These sensors include acceleration sensor, magnetic field sensor, light sensor, proximity sensor, gyroscope sensor, pressure sensor, rotation vector sensor, gravity sensor and orientation sensor. The availability of these sensors in mass-marketed communication devices creates exciting new opportunities for data mining and data mining applications. In this paper, we describe and evaluate a system that uses phone-based accelerometers to perform activity recognition, a task which involves identifying the physical activity that a user is performing. To implement our system, we collected labeled accelerometer data from 10 users as they performed daily activities such as "phone detached", "idle", "walking", "running", and "jumping", and then aggregated this time series data into examples that summarize the user activity 5-minute intervals. We then used the resulting training data to induce a predictive model for activity recognition. This work is significant because the activity recognition model permits us to gain useful knowledge about the habits of millions of users-just by having them carry cell phones in their pockets.

Vibration-Monitoring of a Real Bridge by Using a $Moir\'{e}$-Fringe-Based Fiber Optic Accelerometer

  • Kim, Dae-Hyun;Lee, Jong-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.556-562
    • /
    • 2007
  • This paper presents the use of a novel fiber optic accelerometer system to monitor ambient vibration (both wind-induced one and vehicle-induced) of a real bridge structure. This sensor system integrates the $Moir\'{e}$ fringe phenomenon with fiber optics to achieve accurate and reliable measurements. A low-cost signal processing unit implements unique algorithms to further enhance the resolution and increase the dynamic bandwidth of the sensors. The fiber optic accelerometer has two major benefits in using this fiber optic accelerometer system for monitoring civil engineering structures. One is its immunity to electromagnetic (EM) interference making it suitable for difficult applications in such environments involving strong EM fields, electrical spark-induced explosion risks, and cabling problems, prohibiting the use of conventional electromagnetic accelerometers. The other is its ability to measure both low- and high-amplitude vibrations with a constantly high resolution without pre-setting a gain level, as usually required in a conventional accelerometer. The second benefit makes the sensor system particularly useful for real-time measurement of both ambient vibration (that is often used for structural health monitoring) and strong motion such as earthquake. Especially, the semi-strong motion and the small ambient one are successfully simulated and measured by using the new fiber optic accelerometer in the experiment of the structural health monitoring of a real bridge.

A Research for Removing ECG Noise and Transmitting 1-channel of 3-axis Accelerometer Signal in Wearable Sensor Node Based on WSN (무선센서네트워크 기반의 웨어러블 센서노드에서 3축 가속도 신호의 단채널 전송과 심전도 노이즈 제거에 대한 연구)

  • Lee, Seung-Chul;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.137-144
    • /
    • 2011
  • Wireless sensor network(WSN) has the potential to greatly effect many aspects of u-healthcare. By outfitting the potential with WSN, wearable sensor node can collects real-time data on physiological status and transmits through base station to server PC. However, there is a significant gap between WSN and healthcare. WSN has the limited resource about computing capability and data transmission according to bio-sensor sampling rates and channels to apply healthcare system. If a wearable node transmits ECG and accelerometer data of 4 channel sampled at 100 Hz, these data may occur high loss packets for transmitting human activity and ECG to server PC. Therefore current wearable sensor nodes have to solve above mentioned problems to be suited for u-healthcare system. Most WSN based activity and ECG monitoring system have been implemented some algorithms which are applied for signal vector magnitude(SVM) algorithm and ECG noise algorithm in server PC. In this paper, A wearable sensor node using integrated ECG and 3-axial accelerometer based on wireless sensor network is designed and developed. It can form multi-hop network with relay nodes to extend network range in WSN. Our wearable nodes can transmit 1-channel activity data processed activity classification data vector using SVM algorithm to 3-channel accelerometer data. ECG signals are contaminated with high frequency noise such as power line interference and muscle artifact. Our wearable sensor nodes can remove high frequency noise to clear original ECG signal for healthcare monitoring.

Decision method for rule-based physical activity status using rough sets (러프집합을 이용한 규칙기반 신체활동상태 결정방법)

  • Lee, Young-Dong;Son, Chang-Sik;Chung, Wan-Young;Park, Hee-Joon;Kim, Yoon-Nyun
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.432-440
    • /
    • 2009
  • This paper presents an accelerometer based system for physical activity decision that are capable of recognizing three different types of physical activities, i.e., standing, walking and running, using by rough sets. To collect physical acceleration data, we developed the body sensor node which consists of two custom boards for physical activity monitoring applications, a wireless sensor node and an accelerometer sensor module. The physical activity decision is based on the acceleration data collected from body sensor node attached on the user's chest. We proposed a method to classify physical activities using rough sets which can be generated rules as attributes of the preprocessed data and by constructing a new decision table, rules reduction. Our experimental results have successfully validated that performance of the rule patterns after removing the redundant attribute values are better and exactly same compare with before.

Study on Wireless Acquisition of Vibration Signals (진동신호 무선 수집에 대한 연구)

  • Lee, Sunpyo
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.254-258
    • /
    • 2018
  • A Wi-Fi signal network (WSN) system is introduced in this paper. This system consists of several data-transmitting sensor modules and a data-receiving server. Each sensor module and the server contain a unique intranet IP address. A piezoelectric accelerometer with a bandwidth of 12 kHz, a 24-bit analog-digital converter with a sampling rate of 15.625 kS/s, a 32-bit microprocessor unit, and a 1-Mbps Wi-Fi module are used in the data-transmitting sensor module. A 300-Mbps router and a PC are used in the server. The system is verified using an accelerometer calibrator. The voltage output from the sensor is converted into 24-bit digital data and transmitted via the Wi-Fi module. These data are received by a Wi-Fi router connected to a PC. The input frequencies of the accelerometer calibrator (320 Hz, 640 Hz, and 1280 Hz) are used in the data transfer verification. The received data are compared to the data retrieved directly from the analog-to-digital converter used in the sensor module. The comparison shows that the developed system represents the original data considerably well. Theoretically, the system can acquire vibration signals from 600 sensor modules at an accelerometer bandwidth of 15.625 kHz. However, delay exists owing to software processes, multiplexing between sensor modules, and the use of non-real time operating system. Hence, it is recommended that this system may be used to acquire vibration signals with up to 10 kHz, which is approximately 70% of the theoretical maximum speed of the system. The system can be upgraded using parts with higher performance

Natural Vibration Characteristics of Accelerometer (가속도 계측 센서의 고유진동 특성 분석)

  • Kim, Seung-Ki;Kwak, Moon K.;Yang, Dong-Ho;Yang, Dong-Yuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.922-924
    • /
    • 2014
  • This paper is concerned with the analysis of natural vibration characteristics of an accelerometer used in power plant. The malfunction of the accelerometer in high-temperature environment may produce erroneous sensor signal and the erroneous signal may cause unpredicted accidents in power plants. Hence, the accelerometer which endures high temperature needs to be developed. In this study, the natural vibration characteristics of the accelerometer were investigated prior to the development of the high-temperature accelerometer. The main mechanical part of the accelerometer is a spiral spring. In this study, the dynamic characteristics of the spiral spring were investigated first by using a commercial finite element code. Numerical results show that the thickness of the spiral spring affects the dynamic characteristics. Numerical investigation on the effect of temperature on the performance of the accelerometer will follow.

  • PDF

User Authentication Using Accelerometer Sensor in Wrist-Type Wearable Device (손목 착용형 웨어러블 기기의 가속도 센서를 사용한 사용자 인증)

  • Kim, Yong Kwang;Moon, Jong Sub
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.2
    • /
    • pp.67-74
    • /
    • 2017
  • This paper proposes a method of user authentication through the patterns of arm movement with a wrist-type wearable device. Using the accelerometer sensor which is built in the device, the 3-axis accelerometer data are collected. Then, the collected data are integrated and the periodic cycle are extracted. In the cycle, the features of frequency are generated with the accelerometer. With the frequency features, 2D Gaussian mixture are modelled. For authenticating an user, the data(the accelerometer) of the user at some point are tested with confidence interval of the Gaussian distribution. The model showed a valuable results for the user authentication with an example, which is average 92% accuracy with 95% confidence interval.