• Title/Summary/Keyword: accelerogram

Search Result 34, Processing Time 0.018 seconds

Generation of synthetic accelerograms using a probabilistic critical excitation method based on energy constraint

  • Bazrafshan, Arsalan;Khaji, Naser
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.45-56
    • /
    • 2020
  • The application of critical excitation method with displacement-based objective function for multi degree of freedom (MDOF) systems is investigated. To this end, a new critical excitation method is developed to find the critical input motion of a MDOF system as a synthetic accelerogram. The upper bound of earthquake input energy per unit mass is considered as a new constraint for the problem, and its advantages are discussed. Considering this constraint, the critical excitation method is then used to generate synthetic accelerograms for MDOF models corresponding to three shear buildings of 10, 16, and 22 stories. In order to demonstrate the reliability of generated accelerograms to estimate dynamic response of the structures, three target ground motions with considerable level of energy contents are selected to represent "real critical excitation" of each model, and the method is used to re-generate these ground motions. Afterwards, linear dynamic analyses are conducted using these accelerograms along with the generated critical excitations, to investigate the key parameters of response including maximum displacement, maximum interstory drift, and maximum absolute acceleration of stories. The results show that the generated critical excitations can make an acceptable estimate of the structural behavior compared to the target ground motions. Therefore, the method can be reliably implemented to generate critical excitation of the structure when real one is not available.

Dynamic Test of Structural Models Using 4m $\times$ 4m Shaking Table (4m$\times$4m 진동대를 이용한 구조모델의 동적실험)

  • 이한선
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.207-214
    • /
    • 1997
  • The objective of this study is to review the current stare of earthquake simulation techniques using the shaking table and check the reliability. One degree-of-freedom(d.o.f.)and three d.o.f. aluminium shear models were used and 4m$\times$4m 6 d.o.f. shaking table was excitated in one horizontal direction to simulate 1940 El centro earthquake accelerogram (NS component). When the acceleration history of shaking table is compared to the desired one, it can be found that the overall histories are very similar, but that the lower frequency range (0~2 Hz) of the actual excitation has generally lower amplitude than that of the desired in fourier transform amplitude. Free vibration and white noise tests have shown almost the same values for natural frequencies, but shown quite different values for damping ratios, that is, 1.37% in case of r\free vibration test vs 14.76% in case of white noise test. The time histories of story shear versus story drift show the globally linear elastic behaviors. But the elliptical shape of the histories with one of the axis being the stiffness of the story implies the effect of viscous damping.

  • PDF

Passive control of seismically excited structures by the liquid column vibration absorber

  • Konar, Tanmoy;Ghosh, Aparna Dey
    • Structural Engineering and Mechanics
    • /
    • v.36 no.5
    • /
    • pp.561-573
    • /
    • 2010
  • The potential of the liquid column vibration absorber (LCVA) as a seismic vibration control device for structures has been explored in this paper. In this work, the structure has been modeled as a linear, viscously damped single-degree-of-freedom (SDOF) system. The governing differential equations of motion for the damper liquid and for the coupled structure-LCVA system have been derived from dynamic equilibrium. The nonlinear orifice damping in the LCVA has been linearized by a stochastic equivalent linearization technique. A transfer function formulation for the structure-LCVA system has been presented. The design parameters of the LCVA have been identified and by applying the transfer function formulation the optimum combination of these parameters has been determined to obtain the most efficient control performance of the LCVA in terms of the reduction in the root-mean-square (r.m.s.) displacement response of the structure. The study has been carried out for an example structure subjected to base input characterized by a white noise power spectral density function (PSDF). The sensitivity of the performance of the LCVA to the coefficient of head loss and to the tuning ratio have also been examined and compared with that of the liquid column damper (LCD). Finally, a simulation study has been carried out with a recorded accelerogram, to demonstrate the effectiveness of the LCVA.

Characteristics of Spectral Matched Ground Motions Time Histories According to Seed Ground Motion Selection (원본 지반운동 시간이력에 따른 스펙트럼 부합 시간이력의 특성)

  • Choi, Da Seul;Ji, Hae Yeon;Kim, Jung Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.43-52
    • /
    • 2021
  • According to several seismic design standards, a ground motion time history should be selected similar to the design response spectrum, or a ground motion time history should be modified by matching procedure to the design response spectrum through the time-domain method. For the response spectrum matching procedure, appropriate seed ground motions need to be selected to maintain recorded earthquake accelerogram characteristics. However, there are no specific criteria for selecting the seed ground motions for applying this methodology. In this study, the characteristics of ground motion time histories between seed motions and spectral matched motions were compared. Intensity measures used in the design were compared, and their change by spectral matching procedure was quantified. In addition, the seed ground motion sets were determined according to the response spectrum shape, and these sets analyzed the response of nonlinear and equivalent linear single degrees of freedom systems to present the seed motion selection conditions for spectral matching. As a result, several considerations for applying the time domain spectral matching method were presented.

Seismic control of concrete buildings with nonlinear behavior, considering soil structure interaction using AMD and TMD

  • Mortezaie, Hamid;Zamanian, Reza
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.721-734
    • /
    • 2021
  • The seismic analysis of structures without applying the effects of soil can undermine functional objectives of structure so that it can affect all the desired purposes at the design and control stages of the structure. In this research, employing OpenSees and MATLAB software simultaneously and developing a definite three-dimensional finite element model of a high-rise concrete structure, designed using performance-based plastic design approach, the performance of Tuned Mass Damper (TMD) and Active Mass Damper (AMD) is both examined and compared. Moreover some less noted aspects such as nonlinear interaction of soil and structure, uplift, nonlinear behavior of structure and structural torsion have received more attention. For this purpose, the analysis of time history on the structural model has been performed under 22 far-field accelerogram records. Examining a full range of all structural seismic responses, including lateral displacement, acceleration, inter-story drift, lost plastic energy, number of plastic hinges, story shear force and uplift. The results indicate that TMD performs better than AMD except for lateral displacement and inter-story drift to control other structural responses. Because on the one hand, nonlinear structural parameters and soil-structure interaction have been added and on the other hand, the restriction on the control force applied that leads up to saturation phenomenon in the active control system affect the performance of AMD. Moreover, the control force applied by structural control system has created undesirable acceleration and shear force in the structure.

The questionable effectiveness of code accidental eccentricity

  • Ouazir, Abderrahmane;Hadjadj, Asma;Gasmi, Hatem;Karoui, Hatem
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.45-51
    • /
    • 2022
  • The need to account for accidental torsion in seismic design is no longer debatable, however, the seismic codes' requirement for accidental eccentricity has recently faced criticism. In order to get as close to real conditions as possible, this study investigated the impact of accidental torsion in symmetric RC multistory buildings caused by one of its many sources, the torsional earthquake component, and compared the results to those obtained by using the accidental eccentricity recommended by the codes (shifting the center of mass). To cover a wide range of frequencies and site conditions, two types of torsion seismic components were used: a recorded torsion accelerogram and five others generated using translation accelerograms. The main parameters that govern seismic responses, such as the number of stories (to account for the influence of all modes of vibration) and the frequency ratio (Ω) variation, were studied in terms of inter-story drift and displacement responses, as well as torsional moment. The results show that the eccentricity ratio of 5% required by most codes for accidental torsion should be reexamined and that it is prudent for computer analysis to use the static moment approach to implement the accidental eccentricity while waiting for new seismic code recommendations on the subject.

Dynamic Test of Structural Models Using $4m{\times}4m$ Shaking Table ($4m{\times}4m$ 진동대를 이용한 구조모델의 동적실험)

  • 이한선;우성우;김병현
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.51-56
    • /
    • 1997
  • The objective of this study is to review the current state of earthquake simulation tecniques using the shaking table and check the reliability. One degree-of-freedom(d.o.f) and three d.o.f aluminium shear models were used and $4m{\times}4m$ 6 d.o.f shaking table was excitated in one horizontal direction to simulate 1940 El centro earthquake accelerogram (NS component). When the actual acceleration history of shaking table is compared to the desired one, it can be found that the overall histories are very similar, but that the lower frequency range (0~2 Hz) of the actual excitation has generally lower amplitude than that of the desired in Fourier transform amplitude. Free vibration and white noise tests have shown almost the some values for natural frequencies, but shown quite different values for damping rations, that is, 1.37% in case of free vibration test vs 14.76 % in case of white noise test. The time histories of story shear driff show the globally linear elastic behaviors. But the elliptical shape of the histories with one of the axis being the stiffness of the story implies the effect of viscous damping.

  • PDF

A Study on Development of an Earthquake Ground-motion Database Based on the Korean National Seismic Network (국가지진관측망 기반 지진동 데이터베이스 개발 연구)

  • Choi, Sae-Woon;Rhie, Junkee;Lee, Sang-Hyun;Kang, Tae-Seob
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.277-283
    • /
    • 2020
  • In order to improve the ground-motion prediction equation, which is an important factor in seismic hazard assessment, it is essential to obtain good quality seismic data for a region. The Korean Peninsula has an environment in which it is difficult to obtain strong ground motion data. However, because digital seismic observation networks have become denser since the mid-2000s and moderate earthquake events such as the Odaesan earthquake (Jan. 20, 2007, ML 4.8), the 9.12 Gyeongju earthquake (Sep. 12, 2016, ML 5.8), and the Pohang earthquake (Nov. 15, 2017, ML 5.4) have occurred, some good empirical data on ground motion could have been accumulated. In this study, we tried to build a ground motion database that can be used for the development of the ground motion attenuation equation by collecting seismic data accumulated since the 2000s. The database was constructed in the form of a flat file with RotD50 peak ground acceleration, 5% damped pseudo-spectral acceleration, and meta information related to hypocenter, path, site, and data processing. The seismic data used were the velocity and accelerogram data for events over ML 3.0 observed between 2003 and 2019 by the Korean National Seismic Network administered by the Korea Meteorological Administration. The final flat file contains 10,795 ground motion data items for 141 events. Although this study focuses mainly on organizing earthquake ground-motion waveforms and their data processing, it is thought that the study will contribute to reducing uncertainty in evaluating seismic hazard in the Korean Peninsula if detailed information about epicenters and stations is supplemented in the future.

Finite Element Modeling and Nonlinear Analysis for Seismic Assessment of Off-Diagonal Steel Braced RC Frame

  • Ramin, Keyvan;Fereidoonfar, Mitra
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.1
    • /
    • pp.89-118
    • /
    • 2015
  • The geometric nonlinearity of off-diagonal bracing system (ODBS) could be a complementary system to covering and extending the nonlinearity of reinforced concrete material. Finite element modeling is performed for flexural frame, x-braced frame and the ODBS braced frame system at the initial phase. Then the different models are investigated along various analyses. According to the experimental results of flexural and x-braced frame, the verification is done. Analytical assessments are performed in according to three dimensional finite element modeling. Nonlinear static analysis is considered to obtain performance level and seismic behaviour, and then the response modification factors calculated from each model's pushover curve. In the next phase, the evaluation of cracks observed in the finite element models, especially for RC members of all three systems is performed. The finite element assessment is performed on engendered cracks in ODBS braced frame for various time steps. The nonlinear dynamic time history analysis accomplished in different stories models for three records of Elcentro, Naghan and Tabas earthquake accelerograms. Dynamic analysis is performed after scaling accelerogram on each type of flexural frame, x-braced frame and ODBS braced frame one by one. The base-point on RC frame is considered to investigate proportional displacement under each record. Hysteresis curves are assessed along continuing this study. The equivalent viscous damping for ODBS system is estimated in according to references. Results in each section show the ODBS system has an acceptable seismic behaviour and their conclusions have been converged when the ODBS system is utilized in reinforced concrete frame.

New method for generation of artificial ground motion by a nonstationary Kanai-Tajimi model and wavelet transform

  • Amiri, G. Ghodrati;Bagheri, A.;Fadavi, M.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.709-723
    • /
    • 2007
  • Considering the vast usage of time-history dynamic analyses to calculate structural responses and lack of sufficient and suitable earthquake records, generation of artificial accelerograms is very necessary. The main target of this paper is to present a novel method based on nonstationary Kanai-Tajimi model and wavelet transform to generate more artificial earthquake records, which are compatible with target spectrum. In this regard, the generalized nonstationary Kanai-Tajimi model to include the nonstationary evaluation of amplitude and dominant frequency of ground motion and properties of wavelet transform is used to generate ground acceleration time history. Application of the method for El Centro 1940 earthquake and two Iranian earthquakes (Tabas 1978 and Manjil 1990) is presented. It is shown that the model and identification algorithms are able to accurately capture the nonstationary features of these earthquake accelerograms. The statistical characteristics of the spectral response of the generated accelerograms are compared with those for the actual records to demonstrate the effectiveness of the method. Also, for comparison of the presented method with other methods, the response spectra of the synthetic accelerograms compared with the models of Fan and Ahmadi (1990) and Rofooei et al. (2001) and it is shown that the response spectra of the synthetic accelerograms with the method of this paper are close to those of actual earthquakes.