• 제목/요약/키워드: acceleration training

Search Result 98, Processing Time 0.022 seconds

Generative Model of Acceleration Data for Deep Learning-based Damage Detection for Bridges Using Generative Adversarial Network (딥러닝 기반 교량 손상추정을 위한 Generative Adversarial Network를 이용한 가속도 데이터 생성 모델)

  • Lee, Kanghyeok;Shin, Do Hyoung
    • Journal of KIBIM
    • /
    • v.9 no.1
    • /
    • pp.42-51
    • /
    • 2019
  • Maintenance of aging structures has attracted societal attention. Maintenance of the aging structure can be efficiently performed with a digital twin. In order to maintain the structure based on the digital twin, it is required to accurately detect the damage of the structure. Meanwhile, deep learning-based damage detection approaches have shown good performance for detecting damage of structures. However, in order to develop such deep learning-based damage detection approaches, it is necessary to use a large number of data before and after damage, but there is a problem that the amount of data before and after the damage is unbalanced in reality. In order to solve this problem, this study proposed a method based on Generative adversarial network, one of Generative Model, for generating acceleration data usually used for damage detection approaches. As results, it is confirmed that the acceleration data generated by the GAN has a very similar pattern to the acceleration generated by the simulation with structural analysis software. These results show that not only the pattern of the macroscopic data but also the frequency domain of the acceleration data can be reproduced. Therefore, these findings show that the GAN model can analyze complex acceleration data on its own, and it is thought that this data can help training of the deep learning-based damage detection approaches.

Performance Analysis of Men's 110-m Hurdles using Rhythmic Units

  • Hong, Sung Hong;Ryu, Jae Kyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.2
    • /
    • pp.79-85
    • /
    • 2018
  • Objective: This study aimed to create a strategic training method to enhance optimal athletic ability using information from 1H to 10H rhythmic units. Method: Top three world class athletes and three national winners of 110-m hurdle finals from the 2010 Daegu International Athletics Competition and 2017 National Athletics Championship, respectively, were selected. To analyze the kinematic variables, Dartfish 9.0 was used for two-dimensional analysis. Results: Regarding the interval time from the start to the finish line, the national athletes took less time during the pure acceleration phase (start to 1H) than the foreign athletes. The horizontal velocity increase was slower after 1H; the national athletes showed a lack of ability to accelerate at the interval phases. Moreover, the hurdle clearance time between phases was longer in the national athletes than in the foreign athletes and lacked consistency. Conclusion: The national athletes lacked the ability to accelerate at the transition, maximum rhythm, rhythm maintenance, and re-acceleration phases and showed a longer hurdle clearance time. If technical improvements and strategic training methods using rhythmic units are applied for hurdling motions, the national athlete's hurdling abilities, performance, and consistency could improve.

Study of Fall Detection System According to Number of Nodes of Hidden-Layer in Long Short-Term Memory Using 3-axis Acceleration Data (3축 가속도 데이터를 이용한 장단기 메모리의 노드수에 따른 낙상감지 시스템 연구)

  • Jeong, Seung Su;Kim, Nam Ho;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.516-518
    • /
    • 2022
  • In this paper, we introduce a dependence of number of nodes of hidden-layer in fall detection system using Long Short-Term Memory that can detect falls. Its training is carried out using the parameter theta(θ), which indicates the angle formed by the x, y, and z-axis data for the direction of gravity using a 3-axis acceleration sensor. In its learning, validation is performed and divided into training data and test data in a ratio of 8:2, and training is performed by changing the number of nodes in the hidden layer to increase efficiency. When the number of nodes is 128, the best accuracy is shown with Accuracy = 99.82%, Specificity = 99.58%, and Sensitivity = 100%.

  • PDF

Longitudinal motion characteristics of a ship according to the location (선내 위치에 따른 선박의 종운동 특성)

  • Kang, Il-Kwon;Kim, Min-Seok;Park, Byung-Soo;Hong, Jin-Keun;Jeong, Seong-Jae;Ham, Sang-Jun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.2
    • /
    • pp.147-154
    • /
    • 2012
  • In head sea, a ship has mainly the longitudinal motion such as vertical acceleration and pitch. In that case, the motion characteristics of a ship will have changed as the location different from each of place vertically and horizontally on board. The author carried out an experiment about the ship's vertical acceleration and pitch according to the location for the head sea, and analyzed the data with the aid of the statistical and spectral analyzing method to get the motion characteristics of the vessels. The response of vertical acceleration and pitch not deeply depend on the decks vertically, but displayed the relative big different value horizontally even if same deck. The biggest response of vertical acceleration and pitch among the accommodations was shown at scientist room, but the value of it not reached to the minimum requirement of ISO 2631-1 for working on board.

A Study on Comparison and Analysis of Motion Sickness Inquiry with MSI Calculation for Training Ship Kaya (실습선 가야호의 멀미도 조사와 MSI 계산의 비교 분석에 관한 연구)

  • Han, Seung-Jae;Ha, Young-Rok;Kim, In-Chul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.4
    • /
    • pp.412-418
    • /
    • 2014
  • In this paper, for better boarding performance and pleasant boarding sensitivity of the ship, comparison and analysis was performed of motion sickness questionnaire with MSI(Motion Sickness Incidence) calculation based on ship motion theory(Strip Method) due to sea condition, incident angle in main sail way, economic speed, and calculation position of the training ship Kaya of Pukyong National University. On theses works, the rougher sea conditions became, the higher total motion sickness rate was occurred. The weights of vertical acceleration and the rates of MSI were higher at the bridge and the accommodation, which were located farther from the center of gravity of the ship. And effects of the vertical acceleration of the ship were increased in rolling then in head sea. In comparison between motion sickness questionnaire with MSI calculation, when the vertical acceleration increased, the motion sickness rate increased. The location to increase vertical acceleration and the location to cause motion sickness were agreed.

A kinematic analysis of the Thai boxing clinch

  • Trial, William;Wu, Tom
    • Advances in biomechanics and applications
    • /
    • v.1 no.1
    • /
    • pp.57-66
    • /
    • 2014
  • The purpose of the study was to investigate the kinematics between the double collar-tie and double underhook Thai Boxing clinching positions. Ten amateur mixed martial arts athletes executed six knee strikes for both clinching positions with their dominant limb directed towards a target. A standard two-dimensional video motion analysis was conducted, and the results showed a statistical significant difference at the hip joint angle and the angular acceleration of the knee and ankle. Within both clinching positions, there was a statistically significant correlation between the hip and knee joint angles, hip and knee angular velocities, and hip angular acceleration. Between both clinching positions, there was a statistically significant correlation at the knee joint angle, knee angular velocity, and hip angular acceleration. This study demonstrates the importance of the hip and knee joint movements in both clinching positions, which implies the applications of strength training and flexibility at these joints for sports performance and injury prevention. It is suggested that future studies analyzing the non-dominant leg are warranted to fully understand the Thai Boxing clinch.

A Study on Vehicle Crash Characteristics with RCAR Crash Test in Compliance with the New Test Condition (동일 승용차량에 대한 RCAR 신.구 충돌시험을 통한 차체 충돌특성에 관한 연구)

  • Lim, Jong-Hun;Park, In-Song;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.190-194
    • /
    • 2006
  • This research investigates vehicle structure acceleration and vehicle deformation with RCAR crash test. To investigate vehicle damage characteristics in an individual case, it is possible to RCAR low speed crash test. In this study, two tests were conducted to evaluate difference between RCAR new condition and RCAR old condition. A two large vehicles were subjected to a frontal crash test at a speed of 15km/h with an offset of 40% $10^{\circ}$ angle barrier and flat barrier. The results of the 15km/h with an offset of 40% $10^{\circ}$ angle barrier revealed high acceleration value on the vehicle structure and high repair cost compared to the RCAR 15km/h with an offset of 40% flat barrier. So in order to improve damage characteristics in low speed crash of vehicle structure and body component of the monocoque type passenger vehicles, the end of front side member and front back beam should be designed with optimum level and to supply the end of front side member as a partial condition approx 300mm.

A Study on Realtime Drone Object Detection Using On-board Deep Learning (온-보드에서의 딥러닝을 활용한 드론의 실시간 객체 인식 연구)

  • Lee, Jang-Woo;Kim, Joo-Young;Kim, Jae-Kyung;Kwon, Cheol-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.10
    • /
    • pp.883-892
    • /
    • 2021
  • This paper provides a process for developing deep learning-based aerial object detection models that can run in realtime on onboard. To improve object detection performance, we pre-process and augment the training data in the training stage. In addition, we perform transfer learning and apply a weighted cross-entropy method to reduce the variations of detection performance for each class. To improve the inference speed, we have generated inference acceleration engines with quantization. Then, we analyze the real-time performance and detection performance on custom aerial image dataset to verify generalization.

An image-based deep learning network technique for structural health monitoring

  • Lee, Dong-Han;Koh, Bong-Hwan
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.799-810
    • /
    • 2021
  • When monitoring the structural integrity of a bridge using data collected through accelerometers, identifying the profile of the load exerted on the bridge from the vehicles passing over it becomes a crucial task. In this study, the speed and location of vehicles on the deck of a bridge is reconfigured using real-time video to implicitly associate the load applied to the bridge with the response from the bridge sensors to develop an image-based deep learning network model. Instead of directly measuring the load that a moving vehicle exerts on the bridge, the intention in the proposed method is to replace the correlation between the movement of vehicles from CCTV images and the corresponding response by the bridge with a neural network model. Given the framework of an input-output-based system identification, CCTV images secured from the bridge and the acceleration measurements from a cantilevered beam are combined during the process of training the neural network model. Since in reality, structural damage cannot be induced in a bridge, the focus of the study is on identifying local changes in parameters by adding mass to a cantilevered beam in the laboratory. The study successfully identified the change in the material parameters in the beam by using the deep-learning neural network model. Also, the method correctly predicted the acceleration response of the beam. The proposed approach can be extended to the structural health monitoring of actual bridges, and its sensitivity to damage can also be improved through optimization of the network training.

Reliability analysis of external and internal stability of reinforced soil under static and seismic loads

  • Ahmadi, Rebin;Jahromi, Saeed Ghaffarpour;Shabakhty, Naser
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.599-614
    • /
    • 2022
  • In this study, the reliability analysis of internal and external stabilities of Reinforced Soil Walls (RSWs) under static and seismic loads are investigated so that it can help the geotechnical engineers to perform the design more realistically. The effect of various variables such as angle of internal soil friction, soil specific gravity, tensile strength of the reinforcements, base friction, surcharge load and finally horizontal earthquake acceleration are examined assuming the variables uncertainties. Also, the correlation coefficient impact between variables, sensitivity analysis, mean change, coefficient of variation and type of probability distribution function were evaluated. In this research, external stability (sliding, overturning and bearing capacity) and internal stability (tensile rupture and pull out) in both static and seismic conditions were investigated. Results of this study indicated sliding as the predominant failure mode in the external stability and reinforcing rupture in the internal stability. First-Order Reliability Method (FORM) are applied to estimate the reliability index (or failure probability) and results are validated using the Monte Carlo Simulation (MCS) method. The results showed among all variables, the internal friction angle and horizontal earthquake acceleration have dominant impact on the both reinforced soil wall internal and external stabilities limit states. Also, the type of probability distribution function affects the reliability index significantly and coefficient of variation of internal friction angle has the greatest influence in the static and seismic limits states compared to the other variables.