• Title/Summary/Keyword: acceleration power

Search Result 845, Processing Time 0.034 seconds

A Study on the Cooling Parameter Decision of Linear Motor System by Finite Volume Method (유한체적법을 이용한 리니어모터 시스템의 냉각조건 선정에 관한 연구)

  • Hwang Y.K.;Eun I.E.;Lee C.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.449-450
    • /
    • 2006
  • Development of a feed drive system with high speed, positioning accuracy and thrust has been an important issue in modern automation systems and machine tools. Linear motors can be used as an efficient system to achieve such technical demands. By eliminating mechanical transmission mechanisms such as ball screw or rack-pinion, much higher speeds and greater acceleration can be achieved without backlash or excessive friction. However, an important disadvantage of linear motor system is its high power loss and heating up of motor and neighboring machine components on operation. For the application of the linear motors to precision machine tools an effective cooling method and thermal optimizing measures are required. In this paper presents an investigation into a thermal behavior of linear motor cooling plate. FVM employed to analyze the thermal behavior of the linear motor cooling plate, using the ANSYS-CFX.

  • PDF

The Analysis of Energy Consumption for an Electric Vehicle under Various Driving Circumstance (준중형급 전기자동차의 주행특성에 따른 에너지 소모량 분석)

  • Lee, Dae-Heung;Seo, Ho-Won;Jeong, Jong-Ryeol;Park, Yeong-Il;Cha, Suk-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.38-46
    • /
    • 2012
  • This paper discusses the energy consumption for a mid-size electric vehicle(EV) under various conditions. In order to analyze which driving style is more efficient in terms of the system of the EV, we develop the electric vehicle model and apply several types of speed profiles such as different steady speeds, acceleration/deceleration, and a real world driving cycle including the elevation profile obtained from a GPS device. The results show that the energy consumption of the EV is affected by the operating efficiency of components when driving at low speed, while it depends on required power at wheels when driving at high speed. Also this paper investigates the effect of the elevation of a road and the rate of electrical braking on the energy consumption as well as the fuel economy of a conventional vehicle model under the same conditions.

Performance Analysis of a BIPV Module Based on Round Robin Test of IEA PVPS Task 15 (국제에너지기구 태양광발전 협력사업의 공동실험 방법에 의한 건물일체형 태양광발전(BIPV) 모듈의 성능 평가 분석)

  • Kim, Jin Hee;Ahn, Jong Gwon;Kim, Jun Tae
    • Current Photovoltaic Research
    • /
    • v.8 no.2
    • /
    • pp.54-59
    • /
    • 2020
  • Within the IEA (International Energy Agency) PVPS (Photovoltaic Power System) Programme Task 15, 'Enabling Framework for the Acceleration of BIPV,' a round-robin action focusing on the performance of vertical BIPV elements as a facade in different climatic environments was performed. The performance of identical (both, in construction and bill of materials (BOM)) glass-to-glass c-Si BIPV elements was monitored at seven outdoor test sites in 6 different countries in Europe and Asia. In this work, the comprehensive results of the electrical and corresponding meteorological data will be presented and discussed. The monitored data were merged, processed, and filtered for further analysis. The analysis includes the chracteristics of the module temperatures and the in-plane irradiation at the outdoor test locations, mean daily PR per test module, time series of mean daily performance ratio coefficients, and monthly yield.

BRAIN: A bivariate data-driven approach to damage detection in multi-scale wireless sensor networks

  • Kijewski-Correa, T.;Su, S.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.415-426
    • /
    • 2009
  • This study focuses on the concept of multi-scale wireless sensor networks for damage detection in civil infrastructure systems by first over viewing the general network philosophy and attributes in the areas of data acquisition, data reduction, assessment and decision making. The data acquisition aspect includes a scalable wireless sensor network acquiring acceleration and strain data, triggered using a Restricted Input Network Activation scheme (RINAS) that extends network lifetime and reduces the size of the requisite undamaged reference pool. Major emphasis is given in this study to data reduction and assessment aspects that enable a decentralized approach operating within the hardware and power constraints of wireless sensor networks to avoid issues associated with packet loss, synchronization and latency. After over viewing various models for data reduction, the concept of a data-driven Bivariate Regressive Adaptive INdex (BRAIN) for damage detection is presented. Subsequent examples using experimental and simulated data verify two major hypotheses related to the BRAIN concept: (i) data-driven damage metrics are more robust and reliable than their counterparts and (ii) the use of heterogeneous sensing enhances overall detection capability of such data-driven damage metrics.

Heat Transfer Augmentation on Flat Plate with Two-Dimensional Rods in Impinging Air Jet System [3] : Effect of Rod Diameter (충돌판(衝突板) 근방(近傍)에 배열(配列)된 2차원(次元) rod가 충돌분류(衝突噴流) 열전달(熱傳達)에 미치는 영향(影響)[3] : rod직경변화(直徑燮化)에 대한효과(效果))

  • Kim, D.C.;Lee, Y.H.;Seo, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.4
    • /
    • pp.295-302
    • /
    • 1990
  • The purpose of this study is augmentation of heat transfer without additional power in two-dimensional impinging air jet. The technique of heat transfer augmentation used in this experiment is to place rod bundles in front of the flat heated surface. The effects of rod diameter, nozzle-to-target plate distance and the nozzle exit velocity on heat transfer have been investigated. The main conclusions obtained from this experiment are as follows. High heat transfer augmentation is achieved by means of flow acceleration and thinning of boundary layer by placing rod bundles in front of the flat plate. Average heat transfer coefficient becomes maximum in the case of H/B=10,D=4mm. For H/B=2,D=4mm, maximum heat transfer augmentation has been determined to be about 1.5 times larger than that of the flat plate. Heat transfer augmentation by placing the rod bundles at 12m/s is to be about 2 times more than increasing nozzle exit velocity from 12m/s to 18m/s.

  • PDF

The Feasibility study of Commission plan in HEMU (High-speed Electric Multiple Unit) System (분산형 고속철도 시스템의 시운전방안 효율성 검토)

  • Cho, B.C.;Kim, K.G.;Jeong, S.H.;Kim, J.S.;Lim, K.M.
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1039-1044
    • /
    • 2008
  • By the result of efforts for the technology development of G7 trainset, the technology of domestic high-speed train KTX-II has lately been put to practical use while a forward countries of railway, which have their own developing ability of high-speed train, are competing against each other for the development of faster high-speed train system. Japan has been commissioning of FASTECH 360 which was developed in June 2005. Also France and Germany have been commissioning of next generation high-speed train such as AGV and ICE-3, developed basing on technology of their existing high-speed train system(TGV and ICE), its maximum commercial running speed is 360kph, and adopted multiple unit system. For the development of technology of domestic high-speed train and enhancement of national technology competitive power, HEMU (High-speed Electrical Multiple Unit) development project has been carried out as a national R&D project from last August. For the executing of HEMU's maximum speed test, we have investigated the high speed line characteristics (i.e. radius of curvature, gradient, cant etc.) of Seoul-Pusan line and Honam line which is under construction. We'd like to examine a study of condition for the best HEMU T&C line considering HEMU's characteristics (i.e. acceleration, deceleration etc.) and its interface with infrastructure in this paper.

  • PDF

A Study on a Concept and Basic Design of a Small-Scaled LSM for Ultra-High Speed Railway Transit (초고속열차용 축소모델 선형동기전동기의 개념 및 기본설계 연구)

  • Park, Chan-Bae;Lee, Hyung-Woo;Lee, Byung-Song;Park, Hyun-June
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.905-911
    • /
    • 2009
  • The viscosity drive method by the wheel which is widely used in the conventional railway systems needs a large friction force between the wheel and the guide-rail, which brings on a thrust force for a quick acceleration and a high-speed travelling. In addition, the viscosity drive method needs an increase of the vehicle weight for a large friction force. However, a maglev train is possible to be driven by the electro-magnet instead of the wheel, which produces a levitation and thrust force without any contact. In general, low-speed maglev train uses a linear induction motor(LIM) for propulsion that is operated under 300[km/h] due to the power-collecting and end-effect problems of LIM. In case of high-speed maglev train, a linear synchronous motor(LSM) is more suitable than LIM because of a high-efficiency and high-output properties. LSM has a driving principle as same as a conventional rotary synchronous motor(RSM), and the torque of RSM becomes the thrust force of LSM. A conventional LSM has relatively large air-gap compared with a conventional RSM. So, it must be achieved a design that is considered normal force by finite-asymmetric structure, end-effect on the entry and exit part, and support structure of a moving part. Therefore, in this research, authors accomplish a conceptualizing and basic design of a small-scaled LSM, and characteristics analysis using FEM.

  • PDF

MASS ESTIMATION OF IMPACTING OBJECTS AGAINST A STRUCTURE USING AN ARTIFICIAL NEURAL NETWORK WITHOUT CONSIDERATION OF BACKGROUND NOISE

  • Shin, Sung-Hwan;Park, Jin-Ho;Yoon, Doo-Byung;Choi, Young-Chul
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.343-354
    • /
    • 2011
  • It is critically important to identify unexpected loose parts in a nuclear reactor pressure vessel, since they may collide with and cause damage to internal structures. Mass estimation can provide key information regarding the kind as well as the location of loose parts. This study proposes a mass estimation method based on an artificial neural network (ANN), which can overcome several unresolved issues involved in other conventional methods. In the ANN model, input parameters are the discrete cosine transform (DCT) coefficients of the auto-power spectrum density (APSD) of the measured impact acceleration signal. The performance of the proposed method is then evaluated through application to a large-sized plate and a 1/8-scaled mockup of a reactor pressure vessel. The results are compared with those obtained using a conventional method, the frequency ratio (FR) method. It is shown that the proposed method is capable of estimating the impact mass with 30% lower relative error than the FR method, thus improving the estimation performance.

Effect of flow velocity on corrosion rate and corrosion protection current of marine material (해양 금속재료의 부식속도와 방식전류에 미치는 유속의 영향)

  • Lee, Seong Jong;Han, Min Su;Jang, Seok Ki;Kim, Seong Jong
    • Corrosion Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.226-231
    • /
    • 2015
  • In spite of highly advanced paint coating techniques, corrosion damage of marine metal and alloys increase more and more due to inherent micro-cracks and porosities in coatings formed during the coating process. Furthermore, flowing seawater conditions promote the breakdown of the protective oxide of the materials introducing more oxygen into marine environments, leading to the acceleration of corrosion. Various corrosion protection methods are available to prevent steel from marine corrosion. Cathodic protection is one of the useful corrosion protection methods by which the potential of the corroded metal is intentionally lowered to an immune state having the advantage of providing additional protection barriers to steel exposed to aqueous corrosion or soil corrosion, in addition to the coating. In the present investigation, the effect of flow velocity was examined for the determination of the optimum corrosion protection current density in cathodic protection as well as the corrosion rate of the steel. It is demonstrated from the result that the material corrosion under dynamic flowing conditions seems more prone to corrosion than under static conditions.

A New Vibration Energy Harvester Using Magnetoelectric Transducer

  • Yang, Jin;Wen, Yumei;Li, Ping;Dai, Xianzhi;Li, Ming
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.150-156
    • /
    • 2011
  • Magnetoelectric (ME) transducers were originally intended for magnetic field sensors but have recently been used in vibration energy harvesting. In this paper, a new broadband vibration energy harvester has been designed and fabricated to be efficiently applicable over a range of source frequencies, which consists of two cantilever beams, two magnetoelectric (ME) transducers and a magnetic circuit. The effects of the structure parameters, such as the non-linear magnetic forces of the ME transducers and the magnetic field distribution of the magnetic circuit, are analyzed for achieving the optimal vibration energy harvesting performances. A prototype is fabricated and tested, and the experimental results on the performances show that the harvester has bandwidths of 5.6 Hz, and a maximum power of 0.25 mW under an acceleration of 0.2 g (with g = $9.8\;ms^2$).