• Title/Summary/Keyword: acceleration power

Search Result 845, Processing Time 0.024 seconds

DIFFUSIVE SHOCK ACCELERATION BY MULTIPLE WEAK SHOCKS

  • Kang, Hyesung
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.3
    • /
    • pp.103-112
    • /
    • 2021
  • The intracluster medium (ICM) is expected to experience on average about three passages of weak shocks with low sonic Mach numbers, M ≲ 3, during the formation of galaxy clusters. Both protons and electrons could be accelerated to become high energy cosmic rays (CRs) at such ICM shocks via diffusive shock acceleration (DSA). We examine the effects of DSA by multiple shocks on the spectrum of accelerated CRs by including in situ injection/acceleration at each shock, followed by repeated re-acceleration at successive shocks in the test-particle regime. For simplicity, the accelerated particles are assumed to undergo adiabatic decompression without energy loss and escape from the system, before they encounter subsequent shocks. We show that in general the CR spectrum is flattened by multiple shock passages, compared to a single episode of DSA, and that the acceleration efficiency increases with successive shock passages. However, the decompression due to the expansion of shocks into the cluster outskirts may reduce the amplification and flattening of the CR spectrum by multiple shock passages. The final CR spectrum behind the last shock is determined by the accumulated effects of repeated re-acceleration by all previous shocks, but it is relatively insensitive to the ordering of the shock Mach numbers. Thus multiple passages of shocks may cause the slope of the CR spectrum to deviate from the canonical DSA power-law slope of the current shock.

A Study on the Characteristic of Contactless Power Supply System for Operation Pattern of Stocker System (Stocker 시스템의 동작패턴에 대한 비접촉 전원장치의 특성에 관한 연구)

  • Hwang, Gye-Ho;Lee, Bong-Seob
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.10
    • /
    • pp.23-27
    • /
    • 2011
  • In this paper, material handing cleanroom stocker system for thin film solar cell line of photovoltaic industry and liquid crystal display line of flat panel display industry was selected for the study. Optimum solution for stocker system's CPS(Contactless Power Supply) is approached by changing the motion pattern, optimizing design & production, and analyzing characteristics of the power system. As a result, acceleration time of X-Axis changed from 3 sec to 4 sec, changed the input characteristic of CPS within approximately 11[kW]. This result shows that extending acceleration time of the X-Axis in Stocker Crane's motion pattern can reduce the capacity of the CPS, thus saving the manufacturing cost.

Development of On-line Dynamic Security Assessment System (온라인 동적 안전도평가 시스템의 개발)

  • Nam, H.K.;Song, S.G.;Shim, K.S.;Moon, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.73-76
    • /
    • 2001
  • This paper presents a new systematic contingency selection, screening and ranking method for on-line transient security assessment. Transient stability of a particular generator is influenced most by fault near it. Fault at the transmission lines adjacent to the generators are selected as contingency. Two screening methods are developed using the sensitivity of modal synchronizing torque coefficient and computing an approximate critical clearing time(CCT) without time simulation. The first method, which considers only synchronizing power, may mislead in some cases since it does not consider the acceleration power. The approximate CCT method, which consider both the acceleration and deceleration power, worked well. Finally the Single Machine Equivalent(SIME) method is implemented using IPLAN of PSS/E for detailed stability analysis.

  • PDF

Considerations on the Long-term Reliability of On-line Partial Discharge Ceramic Sensor for Thermal Power Generators and its Demonstration in the Field

  • Sun, Jong-Ho;Youn, Young-Woo;Hwang, Don-Ha;Kang, Dong-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.103-108
    • /
    • 2012
  • The present study describes the considerations on the long-term reliability of the on-line partial discharge (PD) ceramic sensor for thermal power generators. Voltage acceleration aging tests were carried out under continuous and impulsive thermal aging at more than $100^{\circ}C$, considering the practical service environment. Experimental results show that the sensors have a life that could last for more than 100 years, excellent dielectric characteristics, and insulation strength. In addition, the ceramic on-line PD sensors were installed in a thermal power generator in Korea for demonstration. The results of the PD calibration and test voltage application prove that the on-line ceramic sensors have satisfactory performances for on-line PD measurement.

Degradation of Epoxy Coating due to Aging Acceleration Effects

  • Nah, Hwan Seon;Lee, Chul Woo;Suh, Yong Pyo
    • Corrosion Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.99-105
    • /
    • 2006
  • This paper is to investigate feasibility on quantitative aging state of epoxy coating on concrete wall in containment structure under operation of nuclear power plants. For evaluating the physical characteristics of the epoxy coating, adhesion strengths of two kinds of degraded epoxy coating systems on both steel surfaces and concrete surfaces were measured via accelerated aging. Comparatively impedance data taken by ultrasonic test were also taken to relate with adhesion data. After aging, in case of concrete, from half of specimens, aging of epoxy coating was developed. As for steel, on $4^{th}$ inspection day, adhesion force was failed. To improve reliability on quality degradation of epoxy, relationship between adhesion and impedance was analyzed. By tracing to co-respond to these data, it was possible to Fig. out physical state of as-built epoxy coating. The possibility to develop new methodology of time - dependent aging state on epoxy coating was found and discussed.

Thrust Performance and Plasma Acceleration Process of Hall Thrusters

  • Tahara, Hirokazu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.262-270
    • /
    • 2004
  • Basic experiments were carried out using the THT-IV low-power Hall thruster to examine the influences of magnetic field shape and strength, and acceleration channel length on thruster performance and to establish guidelines for design of high-performance Hall thrusters. Thrusts were measured with varying magnetic field and channel structure. Exhaust plasma diagnostic measurement was also made to evaluate plume divergent angles and voltage utilization efficiencies. Ion current spatial profiles were measured with a Faraday cup, and ion energy distribution functions were estimated from data with a retarding potential analyzer. The thruster was stably operated with a highest performance under an optimum acceleration channel length of 20 mm and an optimum magnetic field with a maximum strength of about 150 Gauss near the channel exit and with some shape considering ion acceleration directions. Accordingly, an optimum magnetic field and channel structure is considered to exist under an operational condition, related to inner physical phenomena of plasma production, ion acceleration and exhaust plasma feature. A new Hall thruster was designed with basic research data of the THT-IV thruster. With the thruster with many considerations, long stable operations were achieved. In all experiments at 200-400 V with 1.5-3 mg/s, the thrust and the specific impulse ranged from 15 to 70 mN and from 1100 to 2300 see, respectively, in a low electric power range of 300~1300 W. The thrust efficiency reached 55 %. Hence, a large map of the thruster performance was successfully made. The thermal characteristics were also examined with data of both measured and calculated temperatures in the thruster body. Thermally safe conditions were achieved with all input powers.

  • PDF

Design Parameters of A Six-bar Linkage Vibrating Digger (6절 링크를 이용한 진동굴취기의 설계요인)

  • 문학수;강화석
    • Journal of Biosystems Engineering
    • /
    • v.28 no.1
    • /
    • pp.19-26
    • /
    • 2003
  • An oscillating digger mechanism was designed, constructed. and tested. The mechanism is consisted of a six-bar linkage, one four-bar linkage was fer the digger blade and the other one fur variable soil-crop separation. Experimental variables were amplitude(3, 6, 9 mm). frequency(11.2, 14.9. 17.0 Hz), and forward speed of tractor(0.91, 1.13, 1.56 km/h). Each combination of these variables was replicated three times to measure the draft and torque for power requirement evaluation. and the broken-up soil height on the soil separation sieve mechanism. Four parameters λ(the ratio of vibration speed to forward velocity), p(the ratio of vibration acceleration to forward velocity), K(the ratio of vibration acceleration to gravitational acceleration), and T(the product of λ and K) were induced from three experimental variables: amplitude, frequency, and tractor speed. And the power requirement and soil separation ability were analyzed by regression. Though λ and K were known to be the representative parameters. T was the most moderate one to explain draft. torque. and soil separation in this study. It was estimated that the T equal to or greater than 2.4 was the minimum recommended value. Figure 18 would be useful fir the selection of amplitude. frequency, or operating tractor speed once any two variables are known.

Behavior Analysis of a Seismically Isolated NPP Structure by Varying Seismic Input Generation Method and Strong Ground Motion Duration (입력운동 생성방법과 강진지속시간에 따른 면진원전의 거동 분석)

  • Kim, Hyun-Uk;Joo, Kwang-Ho;Noh, Sang-Hoon;Jung, Chang-Gyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.187-195
    • /
    • 2013
  • In this paper, firstly, acceleration-time histories were generated by varying strong motion duration in the frequency domain for application to a seismically isolated nuclear power structure, so as to examine the effects of strong motion duration on the behavior of the structure. Secondly, real recorded earthquakes were modified to match the target response spectrum based on the revised SRP 3.7.1(2007) and the modified time histories were applied to the analysis of a seismically isolated nuclear power structure. The obtained values of acceleration and displacement responses of the structure were, finally, compared with the values obtained in case of applying acceleration-time histories generated in the frequency domain to the structure.

Low Complexity Hybrid Precoding in Millimeter Wave Massive MIMO Systems

  • Cheng, Tongtong;He, Yigang;Wu, Yuting;Ning, Shuguang;Sui, Yongbo;Huang, Yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1330-1350
    • /
    • 2022
  • As a preprocessing operation of transmitter antennas, the hybrid precoding is restricted by the limited computing resources of the transmitter. Therefore, this paper proposes a novel hybrid precoding that guarantees the communication efficiency with low complexity and a fast computational speed. First, the analog and digital precoding matrix is derived from the maximum eigenvectors of the channel matrix in the sub-connected architecture to maximize the communication rate. Second, the extended power iteration (EPI) is utilized to obtain the maximum eigenvalues and their eigenvectors of the channel matrix, which reduces the computational complexity caused by the singular value decomposition (SVD). Third, the Aitken acceleration method is utilized to further improve the convergence rate of the EPI algorithm. Finally, the hybrid precoding based on the EPI method and the Aitken acceleration algorithm is evaluated in millimeter-wave (mmWave) massive multiple-input and multiple-output (MIMO) systems. The experimental results show that the proposed method can reduce the computational complexity with the high performance in mmWave massive MIMO systems. The method has the wide application prospect in future wireless communication systems.

Experimental study on heat transfer characteristics of supercritical carbon dioxide natural circulation

  • Wang, Pengfei;Ding, Peng;Li, Wenhuai;Xie, Rongshun;Duan, Chengjie;Hong, Gang;Zhang, Yaoli
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.867-876
    • /
    • 2022
  • An experimental study has been conducted to investigate the heat transfer characteristics of supercritical carbon dioxide (sCO2) uniformly heated in the horizontal circular smooth tube. The results illustrated that there was a significant difference in heat transfer between the top wall and bottom wall due to the buoyancy. Bulk flow acceleration cannot be negligible in the high heat flux region, which leads to heat transfer deterioration. A new heat transfer correlation is proposed, in which the buoyancy parameter and bulk flow acceleration have been taken into account. The new correlation and six classic correlations for sCO2 are examined in horizontal tubes. The comparison indicates that the new correlation has a better performance for sCO2 flowing through a horizontal heating tube under natural circulation conditions. For example, 94.9% of the calculated results using the new heat transfer correlation were within ±30% of the experimental results while only 87.9% of that using the Jackson correlation (the best of the six) were within the same error bands.