• Title/Summary/Keyword: acceleration data

Search Result 1,564, Processing Time 0.025 seconds

A Transfer Alignment Method considering a Data Latency Compensation for an Inertial Navigation System in High Dynamic Applications (고기동 환경에서 관성항법장치의 시간지연 보상 전달정렬 기법)

  • Lee, Hyung-Sub;Han, Kyung-Jun;Lee, Sang-Woo;Yu, Myung-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1742-1747
    • /
    • 2015
  • An improved transfer alignment method for a strap-down inertial navigation system (SDINS) is presented here. The alignment accuracy in conventional method is vulnerable to the data latency of a Master INS (MINS) in high maneuverable platforms. We propose a time delay compensation equation considering higher-order terms in the attitude measurement equation of the Kalman filter. The equation incorporates additional information including angular rate, angular acceleration and linear acceleration from the MINS. Simulation results show that the transfer alignment accuracy is significantly improved in the high dynamic environment by incorporating the latency compensation technique.

A Study of Rail Wear by Change of Acceleration and Deceleration (가속도/감속도 변화율에 따른 레일마모 현상에 관한 연구)

  • Ha, Kwan-Yong;Kim, Hie-Sik
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.607-612
    • /
    • 2007
  • In this paper, operation mode of train was divided into powering, coasting, and braking and rail wear phenomenon has been done comparative analysis by each section. Data of train velocity is transferred to acceleration and deceleration from ATO Logging data. Amount of rail wear has been done comparative analysis by traction force of acceleration and braking force of deceleration and a plan for management of track irregularity is come up with by the result of the analysis.

Pioneer's acceleration and its possible implication at cosmological scales

  • Yushchenko, A.V.
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.22.4-22.4
    • /
    • 2008
  • The anomalous acceleration of Pioneer-10 and Pioneer-11 is known since 1992. These spacecrafts show the unexplainable acceleration near $10^{-7}\;cm/sec^2$ in the direction to the Sun. Later the unknown acceleration of the same order was found in the motion of Ulysses in its motion from the Jupiter to Mercury, and in the motion of Galileo, NEAR, Cassini, Rosetta, and Messenger at the flybys of these spacecrafts near the Earth. The possibility of unexplainable acceleration near $10^{-7}\;cm/sec^2$ was discussed also for stellar globular clusters and for galaxies. We propose the empirical formula for taking into account this acceleration and overview the predictions of this formula at cosmological scales. Several unknown observational effects are found. One of these effects is the anomalous redshifts in the clusters of galaxies. It was known previously only for small groups of galaxies. We show the existence of anomalous redshifts in the clusters of galaxies using the spectral observations of near one million galaxies from the SLOAN 5th data release.

  • PDF

Trends on Data Plane Acceleration Technology (데이터 플레인 가속화 기술동향)

  • Choi, K.I.;Lee, B.C.
    • Electronics and Telecommunications Trends
    • /
    • v.30 no.2
    • /
    • pp.87-94
    • /
    • 2015
  • 인터넷 트래픽의 향후 5년간 연평균성장률(CAGR)은 24%(유선 트래픽이 21%, 모바일 트래픽이 68%)로 예상되지만, 인터넷 트래픽을 처리하는 칩셋의 성능 연평균성장률은 14% 정도로 예상되고 있다. 이에 따라, 증가하는 인터넷 트래픽과 이를 처리하는 칩셋의 성능 사이에 격차(Forwarding Gap)가 발생하고 있는 상황이다. 이런 격차를 줄이기 위해 시작된 연구기술이 데이터 플레인 가속화(DPA: Data Plane Acceleration) 기술이다. 본고에서는 데이터 플레인 가속화 기술로 최근 공개 소프트웨어로 발표된 인텔의 DPDK(Data Plane Development Kit)기술과 Linaro의 ODP(Open Data Plane)기술을 중심으로 고속 네트워크 패킷처리를 위한 데이터 플레인 가속화 기술동향을 소개한다.

  • PDF

Acquisition of Grass Harvesting Characteristics Information and Improvement of the Accuracy of Topographical Surveys for the GIS by Sensor Fusion (I) - Analysis of Grass Harvesting Characteristics by Sensor Fusion -

  • Choi, Jong-Min;Kim, Woong;Kang, Tae-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.40 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • Purpose: This study aimed to install an RTK-GPS (Real Time Kinematic-Global Positioning System) and IMU (Inertial Measurement Unit) on a tractor used in a farm to measure positions, pasture topography, posture angles, and vibration accelerations, translate the information into maps using the GIS, analyze the characteristics of grass harvesting work, and establish new technologies and construction standards for pasture infrastructure improvement based on the analyzed data. Method: Tractor's roll, pitch, and yaw angles and vibration accelerations along the three axes during grass harvesting were measured and a GIS map prepared from the data. A VRS/RTK-GPS (MS750, Trimble, USA) tractor position measuring system and an IMU (JCS-7401A, JAE, JAPAN) tractor vibration acceleration measuring systems were mounted on top of a tractor and below the operator's seat to obtain acceleration in the direction of progression, transverse acceleration, and vertical acceleration at 10Hz. In addition, information on regions with bad workability was obtained from an operator performing grass harvesting and compared with information on changes in tractor posture angles and vibration acceleration. Results: Roll and pitch angles based on the y-axis, the direction of forward movements of tractor coordinate systems, changed by at least $9-13^{\circ}$ and $8-11^{\circ}$ respectively, leading to changes in working postures in the central and northern parts of the pasture that were designated as regions with bad workability during grass harvesting. These changes were larger than those in other regions. The synthesized vectors of the vibration accelerations along the y-axis, the x-axis (transverse direction), and the z-axis (vertical direction) were higher in the central and northwestern parts of the pasture at 3.0-4.5 m/s2 compared with other regions. Conclusions: The GIS map developed using information on posture angles and vibration accelerations by position in the pasture is considered sufficiently utilizable as data for selection of construction locations for pasture infrastructure improvement.

Thrust Performance and Plasma Acceleration Process of Hall Thrusters

  • Tahara, Hirokazu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.262-270
    • /
    • 2004
  • Basic experiments were carried out using the THT-IV low-power Hall thruster to examine the influences of magnetic field shape and strength, and acceleration channel length on thruster performance and to establish guidelines for design of high-performance Hall thrusters. Thrusts were measured with varying magnetic field and channel structure. Exhaust plasma diagnostic measurement was also made to evaluate plume divergent angles and voltage utilization efficiencies. Ion current spatial profiles were measured with a Faraday cup, and ion energy distribution functions were estimated from data with a retarding potential analyzer. The thruster was stably operated with a highest performance under an optimum acceleration channel length of 20 mm and an optimum magnetic field with a maximum strength of about 150 Gauss near the channel exit and with some shape considering ion acceleration directions. Accordingly, an optimum magnetic field and channel structure is considered to exist under an operational condition, related to inner physical phenomena of plasma production, ion acceleration and exhaust plasma feature. A new Hall thruster was designed with basic research data of the THT-IV thruster. With the thruster with many considerations, long stable operations were achieved. In all experiments at 200-400 V with 1.5-3 mg/s, the thrust and the specific impulse ranged from 15 to 70 mN and from 1100 to 2300 see, respectively, in a low electric power range of 300~1300 W. The thrust efficiency reached 55 %. Hence, a large map of the thruster performance was successfully made. The thermal characteristics were also examined with data of both measured and calculated temperatures in the thruster body. Thermally safe conditions were achieved with all input powers.

  • PDF

Statistical reference values for control performance assessment of seismic shake table testing

  • Chen, Pei-Ching;Kek, Meng-Kwee;Hu, Yu-Wei;Lai, Chin-Ta
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.595-603
    • /
    • 2018
  • Shake table testing has been regarded as one of the most effective experimental approaches to evaluate seismic response of structural systems subjected to earthquakes. However, reproducing a prescribed acceleration time history precisely over the frequency of interest is challenging because shake table test systems are eventually nonlinear by nature. In addition, interaction between the table and specimen could affect the control accuracy of shake table testing significantly. Various novel control algorithms have been proposed to improve the control accuracy of shake table testing; however, reference values for control performance assessment remain rare. In this study, reference values for control performance assessment of shake table testing are specified based on the statistical analyses of 1,209 experimental data provided by the Seismic Simulator Laboratory of National Center for Research on Earthquake Engineering in Taiwan. Three individual reference values are considered for the assessment including the root-mean-square error of the achieved acceleration time history; the percentage of the spectral acceleration that exceeds the determined tolerance range over the frequency of interest; and the error-ratio of the achieved peak ground acceleration. Quartiles of the real experimental data in terms of the three objective variables are obtained, providing users with solid and simple references to evaluate the control performance of shake table testing. Finally, a set of experimental data of a newly developed control framework implementation for uni-axial shake tables are used as an application example to demonstrate the significant improvement of control accuracy according to the reference values provided in this study.

Damage assessment of shear buildings by synchronous estimation of stiffness and damping using measured acceleration

  • Shin, Soobong;Oh, Seong Ho
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.245-261
    • /
    • 2007
  • Nonlinear time-domain system identification (SI) algorithm is proposed to assess damage in a shear building by synchronously estimating time-varying stiffness and damping parameters using measured acceleration data. Mass properties have been assumed as the a priori known information. Viscous damping was utilized for the current research. To chase possible nonlinear dynamic behavior under severe vibration, an incremental governing equation of vibrational motion has been utilized. Stiffness and damping parameters are estimated at each time step by minimizing the response error between measured and computed acceleration increments at the measured degrees-of-freedom. To solve a nonlinear constrained optimization problem for optimal structural parameters, sensitivities of acceleration increment were formulated with respect to stiffness and damping parameters, respectively. Incremental state vectors of vibrational motion were computed numerically by Newmark-${\beta}$ method. No model is pre-defined in the proposed algorithm for recovering the nonlinear response. A time-window scheme together with Monte Carlo iterations was utilized to estimate parameters with noise polluted sparse measured acceleration. A moving average scheme was applied to estimate the time-varying trend of structural parameters in all the examples. To examine the proposed SI algorithm, simulation studies were carried out intensively with sample shear buildings under earthquake excitations. In addition, the algorithm was applied to assess damage with laboratory test data obtained from free vibration on a three-story shear building model.

Application of Artificial Neural Networks to the prediction of out-of-plane response of infill walls subjected to shake table

  • Onat, Onur;Gul, Muhammet
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.521-535
    • /
    • 2018
  • The main purpose of this paper is to predict missing absolute out-of-plane displacements and failure limits of infill walls by artificial neural network (ANN) models. For this purpose, two shake table experiments are performed. These experiments are conducted on a 1:1 scale one-bay one-story reinforced concrete frame (RCF) with an infill wall. One of the experimental models is composed of unreinforced brick model (URB) enclosures with an RCF and other is composed of an infill wall with bed joint reinforcement (BJR) enclosures with an RCF. An artificial earthquake load is applied with four acceleration levels to the URB model and with five acceleration levels to the BJR model. After a certain acceleration level, the accelerometers are detached from the wall to prevent damage to them. The removal of these instruments results in missing data. The missing absolute maximum out-of-plane displacements are predicted with ANN models. Failure of the infill wall in the out-of-plane direction is also predicted at the 0.79 g acceleration level. An accuracy of 99% is obtained for the available data. In addition, a benchmark analysis with multiple regression is performed. This study validates that the ANN-based procedure estimates missing experimental data more accurately than multiple regression models.

A Study on the Development of a Rapid Safety Assessment System for Buildings Using Seismic Accelerometers (지진가속도 계측기를 이용한 건축물의 긴급 안전성 평가 알고리즘 개발에 대한 연구)

  • Jeong, Seong-Hoon;Jang, Won-Seok;Park, Byung-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.161-170
    • /
    • 2020
  • In this study, develop the seismic acceleration measurement data conversion and signal processing algorithms for improve the operational efficiency of the seismic acceleration measurement system installed for public facilities. Through the analysis of the seismic acceleration time history data, the evaluation methods and criteria and evaluating the safety of buildings were proposed. The system was applied to the test bed building to verify its operation and usability. It is expected to be used as a decision making support data and determining the direction and priority of disaster response in the event of an earthquake.