• Title/Summary/Keyword: accelerated stress test

Search Result 295, Processing Time 0.025 seconds

Prediction on Fatigue Life of Messenger Wire with Service Environments (사용환경에 따른 조가선의 피로수명 예측)

  • Chang Seky;Kim Yong-Ki
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.6 s.31
    • /
    • pp.525-532
    • /
    • 2005
  • Fatigue life of catenary wires in various environments is reduced when stress is concentrated on some points, which are often found in corroded areas by surrounding pollutants. Therefore, the fatigue test were performed in order to investigate the effect of the surface corrosion on the destructive behavior in service environment and accelerated corrosion environment as well as th examine the corrosive property and mechanism of the catenary wires. In the fatigue test of the messenger stranded wire, the corrosion degraded materials showed 35~50% of fatigue life at a same stress amplitude compared to original material. Because the catenary wires have variable load by the interaction of periodic contacts with pantographs the maximum stresses of trolley wire and messenger wire calculated by simulation at the messenger wire during operation was estimated thought the corrosion behavior interpretation of variable stress and fatigue test.

Conditional Confidence Interval for Parameters in Accelerated Life Testing

  • Park, Byung-Gu;Yoon, Sang-Chul
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.1
    • /
    • pp.21-35
    • /
    • 1996
  • In this paper, estimation and prediction procedures are discussed for grneral situation in which the failure time follows the independent density $f_{i}({\varepsilon}_{i})$ for the accelerated life testing under Type II censoring. In the context of accelerated life test experiment, procedures are given for estimating the parameters in the Eyring model, and for estimating mean life at a given future stress level. The procedures given are conditional confidence interval procedures, obtained by conditioning on ancillary statistics. A comparison is made of these procedures and procedures based on asymptotic properties of the maximum, likelihood estimates.

  • PDF

A Study on Accelerated Life Testing Model and Design (헬기용 와이퍼 조립체의 가속모델 및 가속수명시험 설계 연구)

  • Kim, Daeyu;Hur, Jangwook;Jeon, Buil
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.894-903
    • /
    • 2018
  • In the case of helicopters, the development of parts technology is rapidly changing, and the complexity is rapidly increasing. Particularly, the surge of various electric and electronic systems is recognized as a problem that is directly related to the safety of the helicopter. Due to these problems, there is a growing interest in reliability evaluation in the face of the problem of confirming and certifying the reliability of parts in the development stage. In this paper, the analysis of the failure mechanism of the wiper system was carried out, and the priority and importance of each failure mode were checked by using the results, and major stress factors were derived and the corresponding acceleration model was selected. Also, the accelerated lifetime test time was calculated according to the life test time, acceleration status and acceleration level of the steady state by using the selected acceleration model and characteristic values.

A study on Accelerated Life Prediction of Gas Welded joint of STS301L (1. Plug and Ring type) (STS301L 가스용접이음재의 가속수명에측에 관한 연구 (1. Plug and Ring type))

  • Baek, Seung-Yeb;Bae, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1355-1360
    • /
    • 2008
  • Stainless steel sheets are widely used as the structure material for the railroad cars and the commercial vehicles. These kinds structures used stainless steel sheets are commonly fabricated by using the gas welding. Gas welding is very important and useful technology in fabrication of an railroad car and vehicles structure. However fatigue strength of the gas welded joints is considerably lower than parent metal due to stress concentration at the weldment, fatigue strength evaluation of gas welded joints are very important to evaluate the reliability and durability of railroad cars and to establish a criterion of long life fatigue design. In this paper, ${\Delta}P-N_f$ curve were obtained by fatigue tests. Using these results, the accelerated life test (ALT) is conducted. From the experimental results, an acceleration model is derived and acceleration factors are estimated. So it is intended to obtain the useful information for the fatigue lifetime of plug and ring gas welded joints and data analysis by statistic reliability method, to save time and cost, and to develop optimum accelerated life prediction plans.

  • PDF

A Study on Accelerated Life Prediction Automation of Gas Welded Joint of STS301L (Plug and Ring Type) (STS301L 가스용접이음재의 가속수명예측 자동화에 관한 연구 (Plug and Ring Type))

  • Baek, Seung-Yeb;Sohn, Il-Seon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.1-8
    • /
    • 2011
  • Stainless steel sheets are widely used as the structure material for the railroad cars and the commercial vehicles. These kinds structures used stainless steel sheets are commonly fabricated by using the gas welding. Gas welding is very important and useful technology in fabrication of an railroad car and vehicles structure. However fatigue strength of the gas welded joints is considerably lower than parent metal due to stress concentration at the weldment, fatigue strength evaluation of gas welded joints are very important to evaluate the reliability and durability of railroad cars and to establish a criterion of long life fatigue design. In this paper, ${\Delta}-N_f$ curve were obtained by fatigue tests. Using these results, the accelerated life test (ALT) is conducted. From the experimental results, an acceleration model is derived and acceleration factors are estimated. So it is intended to obtain the useful information for the fatigue lifetime of plug and ring gas welded joints and data analysis by statistical reliability method, to save time and cost, and to develop optimum accelerated life prediction plans.

Non-destructive Evaluation Method for Service Lifetime of Chloroprene Rubber Compound Using Hardness

  • Park, Kwang-Hwa;Lee, Chan-Gu;Park, Joon-Hyung;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.56 no.3
    • /
    • pp.124-135
    • /
    • 2021
  • Evaluating service lives of rubber materials at certain temperatures requires a destructive method (typically using elongation at break). In this study, a non-destructive method based on hardness change rate was proposed for evaluating the service life of chloroprene rubber (CR). Compared to the destructive method, this non-destructive method ensures homogeneity of CR specimens and requires a small number of samples. Thermal accelerated degradation test was conducted on the CR specimens at 55, 70, 85, 100, and 125℃, and the tensile strength, elongation at break, and hardness were measured. The results of the experiment were compared to those of the accelerated life evaluation method proposed in this study. Comparing the analyzed lives in the high temperature region (70, 85, 100, and 125℃), the difference between the service lives for the destructive method (using the elongation at break) and non-destructive method (using the hardness) was approximately 0.1 year. Therefore, it was confirmed that the proposed non-destructive evaluation method based on hardness changes can evaluate the actual life of CR under thermally accelerated degradation conditions.

Design of accelerated life test on temperature stress of piezoelectric sensor for monitoring high-level nuclear waste repository (고준위방사성폐기물 처분장 모니터링용 피에조센서의 온도 스트레스에 관한 가속수명시험 설계)

  • Hwang, Hyun-Joong;Park, Changhee;Hong, Chang-Ho;Kim, Jin-Seop;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.451-464
    • /
    • 2022
  • The high-level nuclear waste repository is a deep geological disposal system exposed to complex environmental conditions such as high temperature, radiation, and ground-water due to handling spent nuclear fuel. Continuous exposure can lead to cracking and deterioration of the structure over time. On the other hand, the high-level nuclear waste repository requires an ultra-long life expectancy. Thus long-term structural health monitoring is essential. Various sensors such as an accelerometer, earth pressure gauge, and displacement meter can be used to monitor the health of a structure, and a piezoelectric sensor is generally used. Therefore, it is necessary to develop a highly durable sensor based on the durability assessment of the piezoelectric sensor. This study designed an accelerated life test for durability assessment and life prediction of the piezoelectric sensor. Based on the literature review, the number of accelerated stress levels for a single stress factor, and the number of samples for each level were selected. The failure mode and mechanism of the piezoelectric sensor that can occur in the environmental conditions of the high-level waste repository were analyzed. In addition, two methods were proposed to investigate the maximum harsh condition for the temperature stress factor. The reliable operating limit of the piezoelectric sensor was derived, and a reasonable accelerated stress level was set for the accelerated life test. The suggested methods contain economical and practical ideas and can be widely used in designing accelerated life tests of piezoelectric sensors.

The Diagnosis for Life Data in Accelerated Life Testing (가족수명시험에서의 수명데이타에 관한 진단)

  • Bae, Suk-Joo;Kang, Chang-Wook
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.4
    • /
    • pp.29-43
    • /
    • 1996
  • This paper identifies these data by the data diagnosis in lognormal distribution and presents the method to obtain exact parameter estimates and confidence intervals of regression line. The life-stress relationship uses Arrhenius model and life data generate Class-H insulation complete data by simulation. Also, the method to estimate parameters uses least squares estimation and externally Studentized residuals can be used as test statistics for identifing outliers. And influential cases are identified by Cook's distance. This research is intended to obtain the useful information for the life of products and test method, to save time and costs, and to help optimum accelerated life test plans.

  • PDF

Reliability Estimation of Door Hinge for Rome Appliances (가전제품용 경첩의 신뢰성 추정)

  • Kim Jin Woo;Shin Jae Chul;Kim Myung Soo;Moon Ji Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.689-697
    • /
    • 2005
  • This paper presents the reliability estimation of door hinge for home appliances, which consists of bushing and shaft. The predominant failure mechanism of bushing made of polyoxymethylene(POM) is brittle fracture due to decrease of strength caused by voids existing, and that of shaft made of acrylonitrile-butadiene-styrene(ABS) is creep due to plastic deformation caused by excessive temperature and lowering of glass transition temperature by absorbed moisture. Since the brittle fracture of bushing is overstress failure mechanism, the load-strength interference model is used to estimate the failure rate of it along with failure analysis. By the way, the creep of shaft is wearout failure mechanism, and an accelerated life test is then planned and implemented to estimate its lifetime. Through the technical review about failure mechanism, temperature and humidity are selected as accelerating variables. Assuming Weibull lifetime distribution and Eyring model, the life-stress relationship and acceleration factor, $B_{10}$ life and its lower bound with $90\%$ confidence at worst case use condition are estimated by analyzing the accelerated life test data.

Reliability Estimation of Door Hinge for Home Appliances (가전제품용 경첩의 신뢰성 추정)

  • 문지섭;김진우;이재국;이희진;신재철;김명수
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.07a
    • /
    • pp.303-311
    • /
    • 2004
  • This paper presents the reliability estimation of door hinge for home appliances, which consists of bushing and shaft. The predominant failure mechanism of bushing made of polyoxymethylene(POM) is brittle fracture due to decrease of strength caused by voids existing, and that of shaft made of acrylonitrile-butadiene-styrene(ABS) is creep due to plastic deformation caused by excessive temperature and lowering of glass transition temperature by absorbed moisture. Since the brittle fracture of bushing is overstress failure mechanism, the load-strength interference model is used to estimate the failure rate of it along with failure analysis. By the way, the creep of shaft is wearout failure mechanism, and an accelerated life test is then planned and implemented to estimate its lifetime. Through the technical review about failure mechanism, temperature and humidity are selected as accelerating variables. Assuming Weibull lifetime distribution and Eyring model, the life-stress relationship and acceleration factor, B$_{10}$ life and its lower bound with 90% confidence at worst case use condition are estimated by analyzing the accelerated life test data.a.

  • PDF