• Title/Summary/Keyword: accelerated cooling

Search Result 87, Processing Time 0.024 seconds

A Study on Effect of PWHT in AH36-TMCP Steel (AH36-TMCP강의 용접후열처리 효과에 관한 연구)

  • 유효선;장원상;안병국;정세희
    • Journal of Welding and Joining
    • /
    • v.16 no.6
    • /
    • pp.44-51
    • /
    • 1998
  • It is well known that the fine bainitic microstructure obtained by TMCP(thermo-mechanical control process) secures the high toughness of base metal. Besides, TMCP steel is very suitable for high heat input in welding as it has low carbon equivalent. In HAZ, however, the accelerated cooling effect imparted on the matrix by the weld thermal cycles is relieved and thus the weldment of TMCP steel has softening zone which shows low fracture toughness compared with base metal. Therefore, PHWT of weldment is carried out to improve the fracture toughness in weldment of TMCP steel which has softening zone. In this study, the effects of PWHT on the weldment of AH36-TMCP steel are investigated by the small punch (SP) test. From the several results such as SP energy and displacement at room temperature, the behavior of transition curves, the fracture strength at -196$^{\circ}C$, distribution of (DBTT)sp and (DBTT)sp, the PWHT condition of A.C. after 85$0^{\circ}C$-1 sec W.C. was suitable condition for recovering a softening zone of HAZ as welded.

  • PDF

Effects of Reducing Agents on Textural Changes and Protein Modification in Extruded Wheat Gluten (압출성형시 환원제 첨가에 의한 밀가루 글루텐의 조직 변화와 단백질의 변성)

  • 고봉경
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.6 no.2
    • /
    • pp.213-219
    • /
    • 1996
  • Addition of reducing agents during extrusion markedly affected physical and chemical properties of wheat flour and gluten extrudates. Expansion at the die was increased for wheat flour and gluten extrudates. Organic materials containing sulfur were evaporated as a flavor from gluten at the die and total sulfur contents were decreased. Physical shape was different for gluten extrudates without reducing agents. It was difficult to form the long strand of gluten extrudate without cooling die. Hydroquinone accelerated cell breakdown and produced more irregular shape of extrudate. However, addition of cysteine decreased the cell breakdown and produced the long strand of gluten extrudates. Chemical reactions of reducing agents such as cysteine and hydroquinone were different for high content (<80%) of wheat gluten. It was assumed that reducing agents donated hydrogen to inhibit the formation of disulfide crosslinking, decreased the dough strength and produced the broken cell and irregular shape of extrudates. Whereas, cysteine reacted as a binder as well as reducing agent and formed long strands. The evidence of reaction of reducing agents was shown from the fact that non-protein disulfide was increased and protein disulfide was slightly decreased from cysteine added gluten extrudate.

  • PDF

An Experimental Study on the Atomization Characteristics of the Rotary Cup Atomizer (회전컵 무화기의 미립화 특성에 관한 실험적 연구)

  • Jin, S.B.;Cho, D.J.;Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • v.6 no.4
    • /
    • pp.14-21
    • /
    • 2001
  • Rotary atomizer is widely used in practical application ranging from combustion, cooling, spray drying, agriculture, chemical system. Rotary cup atomizer has some advantages such as extreme versatility and liquid atomization successfully varying widely in viscosity. In rotary atomization, the feed liquid is centrifugally accelerated to high velocity and the liquid extends over the rotating surface as a thin film before being discharged into an atmosphere. The degree of rotary atomization depends upon peripheral speed, feed rate, liquid properties and atomizer design. An important asset is that thickness and uniformity of the liquid sheet can readily be controlled by regulating the liquid flow rate and the rotational speed. LDPA(Laser Diffraction Particle Analyser) and image aquisition system are used to measure drop size distribution and spray pattern. The atomization characteristics of the rotary cup atomizer is investigated experimentally by varing the liquid feed rate, rotary cup speed and air velocity for atomization. As a results, the effect of air velocity on the atomization characteristics such as drop size and spray uniformity is considerably greater than variation of those with liquid feed rate.

  • PDF

Fatigue properties of welded joints for TMCP steels (TMCP 고장력강 용접부의 피로 특성에 관한 연구)

  • 임채범;권영각;엄기원
    • Journal of Welding and Joining
    • /
    • v.8 no.2
    • /
    • pp.40-52
    • /
    • 1990
  • Fatigue behavior of the AH, DH and EH grade TMCP(Thermo-Mechanical Control Process) steels was studied. High cycle and low cycle fatigue tests were carried out for the weldment and base metal of each steel. The results showed that the fatigue limit at 2 * $10^6$ cycles was 33 to 37 kg/$mm^2$ for the base metal and 30 to 34 kg/$mm^2$ for the weldment. The ratio of fatigue limit to tensile strength for TMCP steels was 0.65 to 0.71, which was a value close to the upper limit for the ordinary steels. It was also found that the high cycle fatigue behavior of TMCP steels could be affected by the microstructures of base metal. It will be necessary to have fine structure for TMCP steels to increase the fatigue resistance. In low cycle fatigue test, the fatigue lifetime of AH and DH steels accorded well with the ASME best fit curve, while that of EH steel was considerably lower than the fatigue lifetime of the other steels. Fatigue resistance of the weldment made by high heat input(180kJ/cm) welding was not lower than that made by low heat input(80kJ/cm) welding in case of high cycle fatigue, but the high heat input welding decreased the fatigue resistance in case of low cycle fatigue.

  • PDF

Low cycle fatigue behaviour of TMCP steel in as-received and welded states (TMCP 고장력강재와 그 용접부의 저사이클피로특성에 관한 연구)

  • 김영식;한명수
    • Journal of Welding and Joining
    • /
    • v.8 no.4
    • /
    • pp.46-57
    • /
    • 1990
  • TMCP steel manufactured by controlled rolling followed by accelerated cooling process is known to have extra-ordinary mechanical properties such as tensile strength and toughness. However, there is much uncertainty about the fatigue fracture characteristics, especially, in the welded state of this steel. In case of this steel, the softening zone by welding is generated in heat affected zone in contrast with the case of conventional normalized high strength steel. This softening zone is considered to play significant roles in low cycle fatigue fracture of the welded part of this steel. In this paper, the low cycle fatigue behaviors of TMCP steel were inspected in as-received and welded state using the smooth specimen. The fatigue life-time was seperately investigated on the basis of failure of the specimen and crack initiation which is detected by differential strain method. Moreover, the low cycle fatigue characteristics of TMCP steel were quantitatively compared with those of the conventional normalized steel of same strength level.

  • PDF

Quench Distribution in AU/YBCO Thin Film Meander Lines with a Au Meander Line Heater (금선 히터가 있는 금/YBCO 박막 선에서의 퀜치 분포)

  • Kim, H. R.;J. W. Shim;O. B. Hyun;J. M. Oh
    • Progress in Superconductivity
    • /
    • v.5 no.2
    • /
    • pp.118-123
    • /
    • 2004
  • We investigated quench distribution in AU/YBCO thin film meander lines with a heater. Quench distribution during faults is important for superconducting fault current limter applications, because uniform quench allows application of higher voltages across the meander lines. AU/YBCO thin films grown on sapphire substrates were patterned into meander lines by photolithography. Gold films grown on the rear sides of the substrates were also patterned into meander lines, and used as heaters. Meander lines on the front and the rear sides were connected in parallel. The meander lines were subjected to simulated AC fault currents for quench measurements during faults. They were immersed in liquid nitrogen during the experiment for effective cooling. Resistance of the AU/YBCO meander lines initially increased more rapidly with the rear heater than without, and consequently the fault current was limited more. The resistance subsequently became similar, The resistance distribution was more uniform with the heater, especially during the initial quench. Quench was completed more uniformly and significantly earlier. This resulted in uniform distribution of dissipated power. These results could be explained with the concept of quench propagation, which was accelerated by heat transfer across the substrate from the rear heater.

  • PDF

Effect of Surface Roughness on Biodegradability of Poly (3-hydroxybutyrate) (Poly(3-hydroxybutyrate) 표면 형태가 생분해에 미치는 영향)

  • Kim, Mal-Nam;Lee, Ae-Ri
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.3
    • /
    • pp.249-255
    • /
    • 1999
  • The effect of surface roughness on biodegradability of poly (3-hydroxybutyrate) was investigated. The PHB film prepared by cooling the molten polymer slowly ($-0.5^{\circ}C$/min) had higher crystallinity and melting temperature than that prepared by quenching into liquid nitrogen followed by annealing at $90^{\circ}C$ for 2 hours. However, the former sample was found to degrade faster than the latter due to presence of microscopic crack. Roughening the surface of a PHB film by hot pressing under a coarse surfaced plate accelerated the bioerosion considerably of the sample in comparison with the sample having the same thermal history but smooth surface.

  • PDF

Prediction of the Air-side Particulate Fouling in Finned-Tube Heat Exchangers of Air Conditioners used in the Field (실공간 사용 공기조화가용 열교환기의 공기측 파울링 특성 예측)

  • Hwang, Yu-Jin;Kim, Gil-Tae;Jeong, Seong-Il;Lee, Jae-Geun;Ahn, Young-Chull
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.306-310
    • /
    • 2005
  • The air-side particulate fouling in the heat exchangers of HVAC applications degrades the performance of cooling capacity, pressure drop across a heat exchanger, and indoor air quality. Indoor and outdoor air contaminants foul heat exchangers. An empirical modeling equation is derived from the experimental results using accelerated tests and it shows good predictions of the fouling characteristics of the slitted finned tube heat exchangers. However the modeling equation predicts only the fouling characteristics of new heat exchangers and it can not predicts fouling characteristics obtained from actual field data. The purpose of this study is to modify the previous modeling equation using the actual field data Therefore an modified modeling equation is proposed and it shows good predictions of the actual fouling characteristics of finned-tube heat exchangers.

  • PDF

A Study on Fracture Toughness with Thermal Aging in CF8M/SA508 Welds (CF8M과 SA508 용접재의 열화에 따른 파괴인성에 관한 연구)

  • Woo Seung-Wan;Choi Young-Hwan;Kwon Jae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1173-1178
    • /
    • 2006
  • In a primary reactor cooling system(RCS), a dissimilar weld zone exists between cast stainless steel(CF8M) in a pipe and low-alloy steel(SA508 cl.3) in a nozzle. Thermal aging is observed in CF8M as the RCS is exposed for a long period of time to a reactor operating temperature between 290 and $330^{\circ}C$, while no effect is observed in SA508 cl.3. The specimens are prepared by an artificially accelerated aging technique maintained for 300, 1800 and 3600 hrs at $430^{\circ}C$, respectively. The specimens for elastic-plastic fracture toughness tests are according to the process in the thermal notch is created in the heat affected zone(HAZ) of CF8M and deposited zone. From the experiments, the $J_{IC}$ value notched in HAZ of CF8M presented a rapid decrease up to 300 hours at $430^{\circ}C$ and slowly decreased according to the process in the thermal aging time. Also, the $J_{IC}$ value presented a lower value than that of the CF8M base metal. And, the $J_{IC}$ of the deposited zone presented the lowest value of all other cases.

Effects of Thermal Aging on the Fracture Characteristic in the Dissimilar Welds (CF8M과 SA508 용접재의 열화에 따른 파괴특성 평가)

  • Woo, Seung-Wan;Kwon, Jae-Do;Choi, Sung-Jong;Choi, Young-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.72-77
    • /
    • 2004
  • In a primary reactor cooling system(RCS), a dissimilar weld zone exists between cast stainless steel(CF8M) in a pipe and low-alloy steel(SA508 cl.3) in a nozzle. Thermal aging is observed in CF8M as the RCS is exposed for a long period of time to a reactor operating temperature between 290 and $330^{\circ}C$, while no effect is observed in SA508 cl.3. The specimens are prepared by an artificially accelerated aging technique maintained for 300, 1800 and 3600 hrs at $430^{\circ}C$, respectively. The specimens for elastic-plastic fracture toughness tests are prepared one type, which notch is created in the heat affected zone(HAZ) of CF8M. And, the specimens for fatigue crack growth tests are prepared in three classes, which notches are created at the center of deposited zone, the HAZ of CF8M, and the HAZ of SA508 cl.3. From the experiments, the J-integral values with the increase of aging time decrease, and the differences of the fatigue crack growth behaviors are relatively small in the three classes specimens.

  • PDF