• Title/Summary/Keyword: accelerated conditions

Search Result 730, Processing Time 0.027 seconds

Analysis on the Surface Hydrophilicity & Hydrophobicity Mechanism of Polymer Composites (고분자 복합재료의 표면 친수화 및 소수화 메커니즘 해석)

  • Lim, Kyung-Bum;Roh, Tae-Ho;Lee, Jae-Oy
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3437-3443
    • /
    • 2013
  • The polymer insulators have been extensively used as an alternate material of ceramic insulators. However, when they are used in practical conditions, there are many problems of decreasing performance and shortening lifetime due to the exposures of degradation factors applied from the outdoor situations. Accordingly, the analysis of polymer degradations has been getting influential too late as one of important subjects for improvements of safety and reliability. Heat, water treatments are arbitrary simulated for finding out the initiations and processes of surface degradation on the polymer surface. Especially, this study is focused on the chemical changes properties. From the analysis of hydrophilic and hydrophobic molecular structures, final modeling of surface degradation is accomplished. We checked the contact angle depending on heat and moisturized accelerated degradation and ran an XPS analysis to check the mechanism change of the surface of the PCB polymer composite. The surface that had a tendency to attract moisture showed a decrease in the contact angle and generated a large amount of carboxyl($-COO^*$) radicals. The hydrophobized surface showed an increase in the contact angle and had a stable chemical composition constituted of the breakaway of oxygen radicals and the formation of double bond by carburization.

Evaluation of Physico-mechanical Properties and Durability of Larix kaempferi Wood Heat-treated by Superheated Steam (과열증기 열처리 낙엽송재의 물리·역학적 성능 및 내후성능 평가)

  • Park, Yonggun;Park, Jun-Ho;Yang, Sang-Yun;Chung, Hyunwoo;Kim, Hyunbin;Han, Yeonjung;Chang, Yoon-Seong;Kim, Kyoungjung;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.776-784
    • /
    • 2016
  • In this study, green Larix kaempferi lumber was heat-treated by using superheated steam (SHS) at a pilot scale and then various physico-mechanical properties of the heat-treated wood were evaluated and compared with the properties of conventional hot air (HA) heat-treated wood. Decay resistance of brown rot fungi and compressive strength parallel to the grain of the SHS heat-treated wood without occurrence of drying check from green lumber were increased. On the other hand, density, equilibrium moisture content, shrinkage, and bending strength of the SHS heat-treated wood were lower than those of the conventional HA heat-treated wood. Because heat transfer and thermal hydrolysis of SHS heat treatment was accelerated by a large amount of water, the effect of SHS heat treatment on the physico-mechanical properties was higher than that of HA heat treatment at the similar conditions of temperature and time. From the results of this study, because green lumber can be heat-treated without occurrence of cracks or checks by using SHS and similar heat treatment effect on the physico-mechanical properties of wood can be produced despite a low temperature or short time of heat treatment, it is expected that heat time and energy consumption could be reduced by using SHS.

Evaluations of Corrosion Resistance of Coated Steel Using Polymer Cement Slurry (폴리머 시멘트 슬러리로 코팅한 도장철근의 내식성 평가)

  • Jo, Young-Kug;Kim, Young-Jib;Soh, Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.117-124
    • /
    • 2003
  • Reinforced concrete structures under sever conditions such as marine structures, bridges and structures constructed with aggregates(dredged from sea), can be deteriorated from corrosion of the reinforcing bars. The purpose of this study is to evaluate the anti-corrosive performance of coated steel using polymer cement slurry. Polymer cement slurry with various polymer dispersions and corrosion inhibiting agent were coated to the surface of bars, and tested for accelerated corrosion tests. Tests include immersion in NaCl 10% solution, chloride ion spray, autoclave cure, autoclave cure after carbonation, penetration of NaCl 10 % solution, carbonation after penetration of NaCl 10% solution. Test results, show that the anti-corrosive performace is considerably improved by using polymer cement slurry at surface of steel. And this trend is marked by adding of corrosion inhibiting agent. This difference of the anti-corrosive properties is hardly recognized according to types of polymer dispersions. The coated steel using polymer cement slurry will be improved to a great extent compared to those of plain steel when increasing content of chloride ion in cement concrete.

Treatment of decomposition of Aqueous 2,4-Dichlorophenol Solution by Ultrasonic Irradiation (초음파 검사에 의한 수중의 2,4-Dichlorophenol 분해처리)

  • 손종렬;문경환;김영환;우완기
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.54-62
    • /
    • 1999
  • 2,4-Dichlorophenol was known pollutants caused by the endocrine disruptor into the refractory substances of environment and this is difficult to be degradable by conventional methods. Therefore, a considerable interest has been devoted to developing new process where 2,4-Dichlorophenol can easily decomposed. In this study, the series of ultrasonic irradiation for removal of 2,4-Dichlorophenol has been selected as a model reaction in the batch reactor system in order to obtain the basic data investigate the influence of various experimental parameters such as concentration, pH, reaction temperature, acoustic intensity. The products obtained form the ultrasonic irradiation were analysed by GC/MS and HPLC. The formation of $H_2O_2$, a well-known the strong oxidant was found proportionally to increase with irradiation time. The intermediates of ultrasonic irradiation of 2,4-Dichlorophenol were identified as HCl, catechol, hydroquinone, o,p-benzoquinone, muconic acid, and maleic acid. The final products of this was $CO_2$ and $H_2O$. As the decomposition of 2,4-Dichlorophenol proceeds by the ultrasonic irradiation, the pH of 2,4-Dichlorophenol containing aqueous solution increases slowly, The decomposition of 2,4-Dichlorophenol was found to be occured fast in the basic medium. In general, the rate of reaction is proportional to the reaction temperature obeying the Arrhenius' law. However, in the ultrasonic irradiation, this suggests as the reaction temperature increase the decomposition rate of the reactant decreases. This result meant that the increase of reaction temperature due to the increase of vapor pressure of water accelerated the decrease of acoustic intensity which was can be proportional to the decomposition rae of these compounds. It was found that more than 80% of phenol solution was removed within hours in all reaction conditions. The reaction order in the degradation of the 2,4-Dichlorophenol compounds was verified as the Pseude-first order. From the fore-mentioned results, it can be concluded that the refractory organic compounds caused by endocrine disruptor as 2,4-dichlorophenol could be removed by the ultrasonic irradiation with radicals, such as $H{\;}{\cdot}{\;}and{\;}OH{\;}{\cdot}$ radical causing the high increase of pressure and temperature. Finally, it apeared that the technology using ultrasonic irradiation can be applied to the treatment of refractory substances caused by endocrine disruptor which are difficult to be decomposed by the conventional methods.

  • PDF

Resistance to Chloride Attack of FRP Hybrid Bar After Freezing and Thawing Action (동결융해 이후의 FRP Hybrid Bar의 부식 저항성)

  • Ryu, Hwa-Sung;Park, Ki-Tae;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.59-65
    • /
    • 2018
  • RC(Reinforced Concrete) structures are exposed to various exterior conditions, and the performances of both chloride resistance and freezing/thawing action are evaluated for those exposed to corrosive environment-sea shore. Recently developed FRP Hybrid Bars which is coated with glass fiber and epoxy with core steel has an engineering advantage of higher Elasticity than FRP rod. In this work, corrosion resistance, weight loss, and bond strength are evaluated for the FRP Hybrid Bar tested through freezing/thawing action for 300cycles. The double coated FRP Hybrid Bar shows the least weight loss without defection due to freezing/thawing action. Bond strength in FRP Hybrid Bar increases to 120% of normal steel through torturity effect with Si-coating. Bond strength in normal steel shows 0.86~0.89times in 3-day corrosion acceleration and 0.35~0.38times in 5-day corrosion acceleration, however, that in FRP Hybrid Bar shows little changes in bond strength before and after freezing/thawing action.

Effects of Gamma Radiation arid Methyl Bromide Fumigation on Quarantine Pest and Quality of Asian Pears (감마선 및 Methyl Bromide처리가 배 과실의 검역해충과 품질에 미치는 영향)

  • 권중호;강호진;조덕조;정헌식;권용정;변명우;최성진;최종욱
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.1
    • /
    • pp.57-63
    • /
    • 2002
  • As an alternative to methyl bromide (MeBr) fumigation for the control of quarantine pests of pears (Pyrus pyrifolia cv. Niitaka), the effect of gamma irradiation (0.5~3 kGy) was comparatively investigated. Insects found in the pears were identified Tetranychus urticae Koch and Panonychus ulmi Koch, which were of quarantine importance. These insects were easily destroyed by MeBr even one day after fumigation. Whereas irradiation at 0.5~2 kGy was not enough to reach the mortality, even if 3 kGy showed the same mortality as MeBr after 17 days of treatment. Respiration of pears was stimulated by both increased doses of irradiation and MeBr fumigation. The rates of surface blackening and core browning were accelerated by MeBr rather than higher doses of irradiation. While the changes in flesh firmness and surface color were more apparent in irradiated samples at above 2 kGy than MeBr. There were negligible differences in the contents of titratable acidity, acetaldehyde and ethanol by the treatment conditions except for 3 kGy-irradiated group. Sensory evaluation showed that mere than 1 kGy was the threshold to induce the significant changes in quality of pears.

Physiological Studies on Acute Water-temperature Stress of Juvenile Abalone, Haliotis discus hannai (급격한 수온 스트레스에 따른 전복, Haliotis discus hannai 치패의 생리학적 연구)

  • Kim Tae-Hyung;Yang Moon-Hyu;Choe Mi-Kyung;Han Seok-Jung;Yeo In-Kyu
    • Journal of Aquaculture
    • /
    • v.18 no.1
    • /
    • pp.7-12
    • /
    • 2005
  • This study was conducted to investigate antioxidant enzyme activity (catalase and superoxide dismutase) and Heat Shock Protein 70 (HSP70) mRNA variation in hepatopancreas of abalone (Haliotis discus hannai) cultured under several acute water temperatures. Abalones were cultured at 10, 15, 20, 25 and $30^{\circ}C$, for 0, 6, 12, 24 and 48 hours, respectively. The HSP70 mRNA expression in hepatopancreas was more increased at $30^{\circ}C$ compared to those at 10. 15, 20 (control) and $25^{\circ}C$. The superoxide dismutase (SOD) activity was increased in hepato-pancreas at all water temperature conditions compared to the control ($20^{\circ}C$). The SOD activity at high water temperature (25 and $30^{\circ}C$) tended to be increased after 12 hours, and was increased immediately after exposure to low water temperature (10 and $15^{\circ}C$). and then was recovered to starting level after the increase. Also, catalase (CAT) activity in hepatopancreas was increased in all the groups except for at $10^{\circ}C$ than the control ($20^{\circ}C$). Survival rate of abalone was $100\%$ at 10, 15, 20 and $25^{\circ}C$, but $92\%$ at $30^{\circ}C$. Thus, according to our study, when abalone is appeared at $20^{\circ}C$, defense mechanism against stress at low water temperature can be accelerated to be stabilized at about $5^{\circ}C$. In the case of exposure of abalone to high water temperature, antioxidant enzyme and HSP70 expression were increased due to elevated physiological stimulation factor, such as temperature.

Enhancing the Stability of Slopes Located below Roads, Based on the Case of Collapse at the Buk-sil Site, Jeongseon Area, Gangwon Province (강원도 정선지역 북실지구 깎기비탈면 붕괴 사례를 통한 도로 하부 비탈면 안정성 확보에 관한 고찰)

  • Kim, Hong-Gyun;Bae, Sang-Woo;Kim, Seung-Hyun;Koo, Ho-Bon
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.83-94
    • /
    • 2012
  • Slopes are commonly formed both above and below roads located in mountainous terrain and along riversides. The Buk-sil site, a cut slope formed below the road, collapsed in October, 2010. A field investigation determined the causes of failure as improper drainage of valley water from the slope above the road and direct seepage of road-surface water. These factors may have accelerated the collapse via complex interaction between water and sub-surface structures such as bedding. Projection analysis of the site showed the possible involvement of plane, wedge, and toppling failure. Safety factors calculated by Limit Equilibrium Analysis for plane and wedge failure were below the standard for wet conditions. The wetness index, analyzed using topographic factors of the study area, was 9.0-10.5, which is high compared with the values calculated for nearby areas. This finding indicates a high concentration of water flow. We consider that water-flow control on the upper road is crucial for enhancing slope stability at the Buk-sil site.

Culture Conditions Affecting Spore Germination, Prothallus Propagation and Sporophyte Formation of Dryopteris nipponensis Koidz. (참지네고사리의 포자발아, 전엽체 및 포자체 번식에 영향을 미치는 배양 조건)

  • Jang, Bo Kook;Cho, Ju Sung;Lee, Ki Cheol;Lee, Cheol Hee
    • Horticultural Science & Technology
    • /
    • v.35 no.4
    • /
    • pp.480-489
    • /
    • 2017
  • We investigated a suitable method for in vitro germination of spores, propagation of prothalli, and the formation of sporophytes in the fern Dryopteris nipponensis Koidz. Spore germination rate was relatively high regardless of culture medium. Prothallus development was faster in Knop medium than in Murashige and Skoog (MS) media. Prothalli used in all experiments were obtained from germinated spores, and were cultivated in different concentrations of media components. The active formation of sexual organs such as antheridium made 1MS medium suitable for prothallus propagation, although there was a lower propagation ratio compared to Knop medium. Growth and morphogenesis of prothalli were most effective on 1MS medium containing 2% sucrose, and 60 mM of total nitrogen source with 20:40 mM ratio of $NH_4{^+}:NO_3{^-}$. To select a suitable soil composition for sporophyte formation, ground prothalli were cultivated on single and mixed soils using bed soil, peat moss, perlite, and decomposed granite for 14 weeks. Bed soil promoted sporophyte formation and growth regardless of single or mixed use. In particular, a mixture of bed soil and decomposed granite in a 2:1 ratio (v:v) led to accelerated sporophyte formation ($0.83/cm^2$).

Effects of Construction and Operation of Nuclear Power Plants on Benthic Marine Algae (원자력발전소의 건설과 가동이 저서 해조류에 미치는 영향)

  • 김영환
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.4
    • /
    • pp.379-387
    • /
    • 1999
  • During the past several decades, electricity generating plant increased with remarkable rapidity in Korea. Recently the increase has been much more rapid as the rate of industrialization has accelerated. Construction of nuclear power plants in coastal areas inevitably caused the perturbation of critical coastal habitats and thus influenced marine algal species composition. Particularly, an increase in the building of nuclear power plants led the amounts of heat discharged to increase exponentially. As far as the effects of cooling water and thermal discharges are concerned, benthic marine algae are likely to be vulnerable to a discharge. Heated effluents from nuclear power plants, with the temperature rises of 7~12$^{\circ}C$ under normal operating and design conditions, are discharged through the discharge canal and into natural water bodies. It is clear that the characteristic marine algal community is developed in the area affected by the thermal discharges; i.e. low species richness and low species diversity. Nevertheless, it is worthwhile to note that elevated temperatures exert differential effects depending on the algal populations. Benthic marine algae grown at the discharge canal can be regarded as warm tolerant species. 35 species (4 blue-green, 9 green, 8 brown and 14 red algae) of marine algae occurred more than 20eye frequency at discharge canal of three nuclear power plants in the east coast during 1992 ~ 1998 and thus can be categorized as warm tolerant species in Korea. To minimize the ecological impacts of waste heat on benthic marine algae, it is recommended that, in the future, nuclear power plants will have to employ some form of closed-cycle cooling for the condensers.

  • PDF