• Title/Summary/Keyword: acacetin $7-O-{\beta}-D-glucoside$

Search Result 8, Processing Time 0.021 seconds

Antioxidative Flavonoids from Leaves of Carthamus tinctorius

  • Lee, Jun-Young;Chang, Eun-Ju;Kim, Hyo-Jin;Park, Jun-Hong;Choi, Sang-Won
    • Archives of Pharmacal Research
    • /
    • v.25 no.3
    • /
    • pp.313-319
    • /
    • 2002
  • A total of eight flavonoids (1-8), including a novel $quercetin-7-o-(6"-o-acetyl)-{\beta}-D-glucopyranoside$ (6) and seven known flavonoids, luteolin (1), quercetin (2), luteolin $7-o-{\beta}-D-glucopyranoside$ (3), $luteolin-7-o-(6"-Ο-acetyl)-{\beta}-D-glucopyranoside$ (4) quercetin $7-o-{\beta}-D-glucopyranoside$ (5), acacetin 7-o-{\beta}-D-glucuronide (7) and apigenin-6-C-{\beta}-D-glucopyrano $syl-8-C-{\beta}-D-glucopyranoside$ (8), have been isolated from the leaves of the safflower (Carthamus tinctorius L.) and identified on the basis of spectroscopic and chemical studies. The antioxidative activity of these flavonoids was evaluated against 2-deoxyribose degradation and rat liver microsomal lipid peroxidation induced by hydroxyl radicals generated via a Fenton-type reaction. Among these flavonoids, luteolin-acetyl-glucoside (4) and quercetin-acetyl-glucoside (6) showed potent antioxidative activities against 2-deoxyribose degradation and lipid peroxidation in rat liver microsomes. Luteolin (1), quercetin (2), and their corresponding glycosides (3 & 5) also exhibited strong antioxidative activity, while acacetin glucuronide (7) and apigenin-6,8-di-C-glucoside (8) were relatively less active.

Studies on the Constituents of Impatiens textori (III) (물봉선의 성분에 관한 연구 (III))

  • Lee, Hyang-Yi;Kim, Chong-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.31 no.1
    • /
    • pp.105-108
    • /
    • 2000
  • Impatiens textori Miquel (Balsaminaceae) is an annual plant growing in most parts of Korea. The herb of this plant has been used for the external application of snake poison and the bruise. Previous investigations conducted with the herbs have demonstrated it to contain three flavones and three flavone glycosides. Continuing to previous reports, quercetin, kaempferol and acacetin $7-O-{\beta}-D-glucoside$ were isolated from the herbs of this plant.

  • PDF

Biological Activity of Phenolic Compounds in Seeds and Leaves of Safflower (Carthamus tinctorius L.)

  • Lee, Won-Jung;Cho, Sung-Hee;Lee, Jun-Young;Park, Sang-Won
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.04a
    • /
    • pp.22-39
    • /
    • 2003
  • Biological activity of phenolic compounds in seeds and leaves of safflower (Carthamu tinctorius L.) were evaluated using several in vitro and in vivo assays. Six phenolic constituents were isolated from the seeds and identified as N-feruloylserotonia, N- (p-coumaroyl)serotonin, matairesinol, 8′-hydroxyarctigenin, acacetin 7-O-$\beta$-D-glucoside (tilianine) and acacetin. Six phenolic compounds exhibited considerable antioxidative activity, and especially two serotonins showed potent DPPH radical scavenging activity and antiperoxidative activity against rat liver microsomal lipid peroxidation induced by the hydroxyl radical generated via a Fenton-type reaction. Additionally, six phenolic compounds possessed comparable cytotoxicity against three cancer cells, Hela cell, MCF-7 and HepG2 cell, and particularly acacetin and its glycosides had the most potent cytotoxicity. Moreover, we found that feeding safflower seeds attenuated bone loss, and lowered levels of plasma and liver lipids in ovariectomized rats. Serotonins, lignans and flavones stimulated proliferation of the osteoblast-like cells in a dose-dependent manner (10$^{-15}$ ~10$^{-6}$ M), as potently as E$_2$ (17$\beta$-estradiol). Particularly, serotonins were mainly responsible for bone-protecting and lipid lowering effects in ovariectomized rats. Meanwhile, eight flavonoids, including a novel quercetin-7-O-(6"-O-acetyl)-$\beta$-D-glucopyranoside and seven kown flavonoids, luteolin quercetin, luteolin 7-O-$\beta$-D-glucopyranoside, luteolin-7-O-(6"-O-acetyl)-$\beta$-D-gluco-pyranoside, quercetin 7-O- -glucopyranoside, acacetin 7-O-$\beta$-D-glucuronide and apigenin-6-C-$\beta$-D-glucopyranosyl-8-C-$\beta$-D-glucopyranoside were first isolated and identified from safflower leaf. Among these flavonoids, luteolin-acetyl-glucoside and $\beta$quercetin- acetyl-glucoside showed potent antioxidative activities against 2-deoxyribose degradation and lipid peroxidation in rat liver microsomes. Luteolin, quercetin and their corresponding glycosides also exhibited strong antioxidative activity, while acacetin glucuronide and apigenin-6, 8-di-C-glucoside were relatively less active. Finally, changes in phenolic compositions were also determined by HPLC in the safflower seed and leaf during growth stages and roasting process to produce standardized supplement powerds. These results suggest that phenolic compounds in the roasted safflower seed and leaf may be useful as potential sources of therapeutic agents against several pathological disorders such as carcinogenesis, atherosclerosis and osteoporosis.

  • PDF

Flavonoids from the flower of Chrysanthemum morifolium (국화(Chrysanthemum morifolium)꽃으로부터 Flavonoid의 분리 및 동정)

  • Kim, Hyoung-Geun;Ko, Jung-Hwan;Lee, Yeong-Geun;Pak, Ha-Seung;Kim, Dong-Chan;Son, Kuk-Seong;Baek, Yun-Su;Kwon, Oh-Keun;Shin, Hak-Ki;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.4
    • /
    • pp.357-360
    • /
    • 2016
  • Chrysanthemum morifolium flowers were extracted with 80 % aqueous MeOH, and the concentrated extract was partitioned into EtOAc, n-butyl alcohol (n-BuOH), and water fractions. The repeated silica gel and octadecyl silica gel column chromatographies for the EtOAc and n-BuOH fractions led to isolation of four flavonoids. The chemical structures of the compounds were determined as acacetin (1), apigenin (2), apigenin-7-O-${\beta}$-$\small{D}$-glucopyanoside (3), acacetin-7-O-${\beta}$-$\small{D}$-glucopyranoside (4) based on spectroscopic data analyses including nuclear magnetic resonance, mass spectrometry, and infrared spectrometry.

Antioxidant Properties and Quantification of Phenolic Compounds from Safflower (Carthamus tinctorius L.) Seeds

  • Kim, Eun-Ok;Oh, Ji-Hae;Lee, Sung-Kwon;Lee, Jun-Young;Choi, Sang-Won
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.71-77
    • /
    • 2007
  • The antioxidant properties of twelve phenolic compounds, including matairesinol 4'-O-$\beta$-D-glucoside, 8'-hydroxyarctigenin 4'-O-$\beta$-D-glucoside, matairesinol, 8'-hydroxyarctigenin, N-feruloylserotonin 5-O-$\beta$-D-glucoside, N-(p-coumaroyl)-serotonin-5-O-$\beta$-D-glucoside, N-feruloylserotonin, N-(p-coumaroyl)serotonin, luteolin 7-O-$\beta$-D-glucoside, luteolin, acacetin 7-O-$\beta$-glucuronide, and acacetin, isolated from defatted safflower (Carthamus tinctorius L.) seeds were evaluated with regard to the DPPH, superoxide and hydroxyl radicals. Additionally, levels of phenolic compounds were determined by HPLC in two cultivars of safflower seeds. Among them, four serotonin derivatives showed potent DPPH ($IC_{50}=10.83-21.75\;{\mu}M$) and hydroxyl ($IC_{50}=75.93-374.63\;{\mu}M$) radical scavenging activities, and their activities were significantly stronger than that of ${\alpha}-tocopherol$. Four flavonoids ($IC_{50}=170.65-275.83\;{\mu}M$) and four lignans ($IC_{50}=114.22-406.10\;{\mu}M$) exhibited significant superoxide and hydroxyl radical scavenging activities, respectively, whereas these compounds contained less activity toward the DPPH and hydroxyl radicals than serotonin derivatives. The levels of serotonin derivatives, lignans and flavonoids in safflower seeds of two cultivars ranged from 49.30 to 260.40, 3.72 to 158.90, and 11.72 to 214.97 mg% (dry base), respectively. Of the two cultivars, 'Cheongsu' had somewthat higher concentrations of phenolic compounds than 'Uisan'. These results suggest that phenolic compounds in safflower seeds may playa role as protective phytochemical antioxidants against reactive oxygen-mediated pathological diseases.

Quantitative Changes in Phenolic Compounds of Safflower (Carthamus tinctorius L.) Seeds during Growth and Processing

  • Kim, Eun-Ok;Lee, Jun-Young;Choi, Sang-Won
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.4
    • /
    • pp.311-317
    • /
    • 2006
  • Phenolic compounds in safflower seeds were recently found to stimulate bone formation and increase plasma HDL cholesterol levels in estrogen deficient rats, and to inhibit melanin synthesis. Nine phenolic compounds: $N-feruloylserotonin-5-O-{\beta}-D-glucoside,\;8'-hydroxyarctigenin-4'-O-{\beta}-D-glucoside,\;luteolin-7-O-{\beta}-D-glucoside$, N-(p-coumaroyl)serotonin, N-feruloylserotonin, 8'-hydroxy arctigenin (HAG), luteolin (LT), $acacetin-7-O-{\beta}-D-glucuronide$ (ATG) and acacetin (AT), were quantified by HPLC in safflower (Carthamus tinctorius L.) seeds during growth and processing. During growth, levels of the nine phenolic compounds in the seeds increased progressively with increasing growth stages, reached a maximum on July 30 (42nd day after flowering), and then remained relatively constant. During the roasting process, levels of phenolic compounds, except HAG, LT and AT, generally decreased with increased roasting temperature and time, whereas those of HAG, LT and AT increased progressively with increased roasting temperature and time. During the steaming process, levels of other phenolic compounds except HAG and AT generally tended to increase with increased steaming time, whereas those of HAG and AT were scarcely changed. During the microwave treatment, quantitative changes of phenolic compounds were similar to the roasting process, although there were some differences in levels of phenolic compounds between two heat treatments. These results suggest that the steamed safflower seeds after harvesting on late July may be useful as potential dietary supplement source of phenolic compounds for prevention of several pathological disorders, such as atherosclerosis and osteoporosis and aging.

Studies on the consituents of Chrysanthemum sibiricum FISHER (구절초 chrysanthemum sibiricum FISCHER의 성분 연구)

  • 이용주
    • YAKHAK HOEJI
    • /
    • v.11 no.1_2
    • /
    • pp.7-16
    • /
    • 1967
  • A yellowish microneedles, $C_{28}$ H$_{32}$ $O_{14}$ ${\cdot}$ I$_{1}$/$_2$, H$_{2}$O, m.p.262-$4^{\circ}$ , [${\alpha}$$_{D}^{20}$= -71,$43^{\circ}$(C = 0.42, pyridine), its acetate m.p.123-5.deg., were obtained in 0.3% yield from the leaves of Chrysanthemum sibiricum F$_{ISCHER}$. This substance is insoluble in water and the usual organic solvents except pyridine and ethylene glycol and, is not decomposed by dilute mineral acids but undergoes decomposition on being boiled in 60% H$_{2}$SO$_{4}$ or 35% HCl, giving one moel each of acacetin, glucose and rhamnose. It was not hydrolysed with a rhamnodiastase preparation obtained from the seeds of Rhamnus koraiensis. After permethylation of it, the uncrystallized product was hydrolysed and apigenin-5,4'-dimethyl ehter, m.p.$262^{\circ}$ was obtained, indicating that the disaccharide residue is at the 7 position of acacetin. Partial hydrolysis of this acacetin-7-rhamnoglucoside in cyclohexanol with formic acid gave acacetin-7-glucoside, m.p.246.deg. and rutinose, identifying them with authentic specimen on a paper chromatography. It was thus identified as linarin(acacetin-7-rutinoside) by means of mixed fusion, of paper partition chromatography and of its derivatives. Zemplen and Bognar suggested that the glucosidic linkage of linarin is .betha. by means of synthesis of this substance. But there is no evidence whether it is hydrolysed by emulsin or maltase or not. Linarin itself was not hydrolysed by an emulsin existing in the seed of Apricot or a maltase, but acacetin-7-glucoside(tilianin) which obtained from linarin gave acacetin and glucose on hydrolysis with the same emulsin and accordingly the glucosidic linkages of linarin and tilianin are thus regarded as ${\beta}$.

  • PDF

Chemical Comparison of Germinated- and Ungerminated-Safflower(Carthamus tinctorius) Seeds (홍화(Carthamus tinctorius L.)씨와 발아홍화씨의 화학성분 비교)

  • Kim, Eun-Ok;Lee, Ki-Teak;Choi, Sang-Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.9
    • /
    • pp.1162-1167
    • /
    • 2008
  • This study was to investigate the chemical compositions of germinated (GSS)- and ungerminated (UGSS)-safflower (Carthamus tinctorius) seeds. GSS had higher amount of sugar and crude fiber than UGSS, but less amounts of protein and lipid. Levels of $\alpha$-tocopherol and essential amino acids of GSS were higher than those of UGSS, although there are no difference in fatty acid composition between GSS and UGSS. Among the nine phenolic compounds detected, five phenolic compounds, except for two lignans and two flavonoids, were found in both GSS and UGSS. Four serotonin derivatives accounted for about 80 per cent of total phenolic compounds, and levels of five phenolic compounds decreased slightly with germination. These results suggest that germination may enhance the functionality of safflower seed by increasing nutritional compositions and by decreasing phenolic compounds with bitter taste and cathartic effects.