• 제목/요약/키워드: abutment sinking

검색결과 3건 처리시간 0.02초

Sinking and fit of abutment of locking taper implant system

  • Moon, Seung-Jin;Kim, Hee-Jung;Son, Mee-Kyoung;Chung, Chae-Heon
    • The Journal of Advanced Prosthodontics
    • /
    • 제1권2호
    • /
    • pp.97-101
    • /
    • 2009
  • STATEMENT OF PROBLEM. Unlike screw-retention type, fixture-abutment retention in Locking taper connection depends on frictional force so it has possibility of abutment to sink. PURPOSE. In this study, Bicon$^{(R)}$ Implant System, one of the conical internal connection implant system, was used with applying loading force to the abutments connected to the fixture. Then the amount of sinking was measured. MATERIAL AND METHODS. 10 Bicon$^{(R)}$ implant fixtures were used. First, the abutment was connected to the fixture with finger force. Then it was tapped with a mallet for 3 times and loads of 20 kg corresponding to masticatory force using loading application instrument were applied successively. The abutment state, slightly connected to the fixture without pressure was considered as a reference length, and every new abutment length was measured after each load's step was added. The amount of abutment sinking (mm) was gained by subtracting the length of abutment-fixture under each loading condition from reference length. RESULTS. It was evident, that the amount of abutment sinking in Bicon$^{(R)}$ Implant System increased as loads were added. When loads of 20 kg were applied more than 5 - 7 times, sinking stopped at $0.45{\pm}0.09\;mm$. CONCLUSION. Even though locking taper connection type implant shows good adaption to occlusal force, it has potential for abutment sinking as loads are given. When locking taper connection type implant is used, satisfactory loads are recommended for precise abutment location.

하중조건에 따른 원추형 내측연결 임플랜트 시스템에서 지대주 침하 및 적합에 관한 연구 (Abutment Sinking and Fitness of Conical Internal Connection Implant System according to Loading Condition)

  • 이한라;김희중;손미경;정재헌
    • 구강회복응용과학지
    • /
    • 제24권1호
    • /
    • pp.77-89
    • /
    • 2008
  • 이 연구의 목적은 원추형 내측 연결 임플랜트 시스템에서 하중조건에 따른 지대주의 침하 및 적합도를 평가하는 것이다. 본 연구에서는 내부 원추형 연결방식의 Alloden implant system (Nei Corp. Korea)의 고정체와 2종류(conventional, FDI)의 지대주를 사용하였다. 임상에서 Alloden 임플랜트는 지대주와 고정체 연결시 처음에 손으로 지긋이 눌러 고정시킨 후 mallet을 이용하여 약 3회정도 타격을 가하여 고정한다. 이때 타격시의 정확한 힘을 측정하여 각 실험군에 적용시켰다. 적용 횟수는 손가락으로 누르는 힘을 1회, mallet으로 타격하는 힘을 3회, 저작력으로 가정한 20kg의 힘을 지대주의 침하가 생기지 않을때까지 각각의 표본에 적용하였다. 그 후 각 단계에 대한 지대주의 침하량을 Vernier caliper를 이용하여 측정하였다. 임플랜트는 불포화 폴리에스터(Epovia, Cray Valley Inc. Korea)에 매몰하여 중합시켰고 모든 표본을 절삭한 후 연마하여 주사전자현미경을 통하여 분석, 평가하였다.

Overdenture 하에서 하악응력 및 의치의 변위에 관한 유한요소법적 분석 (FINITE ELEMENT ANALYSIS OF MANDIBULAR STRESSES AND DENTURE MOVEMENTS INDUCED BY OVERDENTURES)

  • 김정희;정재헌;조규종
    • 대한치과보철학회지
    • /
    • 제28권1호
    • /
    • pp.63-94
    • /
    • 1990
  • The purpose of this study was to analyze the displacement and the magnitude and the mode of distribution of the stresses in the lower overdenture, the mucous membrane, the abutment tooth and the mandibular supporting bone when various denture base materials, such as acrylic resin and 0.5mm metal base, and various denture base designs were subjected to different loading schemes. For this study, the two-dimensional finite element method was used. Mandibular arch models, with only canine remaining, were fabricated. In the first denture base design, a space, approximately 1mm thick, was prepared between the denture and the dome abutment. In the second denture base design, contact between the denture and the dome abutment was eliminated except the contact of the occlusal third of the abutment. In order to represent the same physiological condition as the fixed areas of the mandible under loading schemes, the eight nodes which lie at the mandibular angle region, the coronoid process and the mandibular condyle were assumed to be fixed. Each model was loaded with a magnitude of 10 kgs on the first molar region(P1) and 7 kgs on the central incisal region (P2) in a vertical direction. Then the force of 10 kgs was applied distributively from the first premolar to the second molar of each model in a vertical direction(P3). The results were as follows. : 1. When the testing vertical loads were given to the selected points of the overdenture, the overdenture showed the rotatory phenomenon, as well as sinking and the displacements of alveolar ridge, abutment and lower border of mandible under the metal base overdenture were less than those under the acrylic resin overdenture. 2. The maximum principal stresses(the maximum tensile stresses) being considered, high tensile stresses occured at the buccal shelf area, the posterior region of the ridge crest and the anterior border region of the mandibular ramus. 3. The minimum principal stresses(the maximum compressive stresses) being considered, high compressive stresses occured at the inferior and posterior border region of the mandible, the mandibular angle and the posterior border region of the mandibular ramus. 4. The vertical load on the central incisal region(P2) produced higher equivalent stress in the mandible than that on any other region(P1, P3) because of the long lever arm distance from the fixed points to the loading point. 5. Higher equivalent stresses were distributed throughout the metal base overdenture than the resin base overdenture under the same loading condition. 6. The case of occlusal third contact of the abutment to the denture produced higher equivalent stresses in the abutment, the mandibular area around the abutment and the overdenture than the case of a 1mm space between the denture and the abutment. 7. Without regard to overdenture base materials and designs, the amounts and distribution patterns of equivalent stresses under the same loading condition were similar in the mucous membrane.

  • PDF