• Title/Summary/Keyword: abutment sinking

Search Result 3, Processing Time 0.018 seconds

Sinking and fit of abutment of locking taper implant system

  • Moon, Seung-Jin;Kim, Hee-Jung;Son, Mee-Kyoung;Chung, Chae-Heon
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.2
    • /
    • pp.97-101
    • /
    • 2009
  • STATEMENT OF PROBLEM. Unlike screw-retention type, fixture-abutment retention in Locking taper connection depends on frictional force so it has possibility of abutment to sink. PURPOSE. In this study, Bicon$^{(R)}$ Implant System, one of the conical internal connection implant system, was used with applying loading force to the abutments connected to the fixture. Then the amount of sinking was measured. MATERIAL AND METHODS. 10 Bicon$^{(R)}$ implant fixtures were used. First, the abutment was connected to the fixture with finger force. Then it was tapped with a mallet for 3 times and loads of 20 kg corresponding to masticatory force using loading application instrument were applied successively. The abutment state, slightly connected to the fixture without pressure was considered as a reference length, and every new abutment length was measured after each load's step was added. The amount of abutment sinking (mm) was gained by subtracting the length of abutment-fixture under each loading condition from reference length. RESULTS. It was evident, that the amount of abutment sinking in Bicon$^{(R)}$ Implant System increased as loads were added. When loads of 20 kg were applied more than 5 - 7 times, sinking stopped at $0.45{\pm}0.09\;mm$. CONCLUSION. Even though locking taper connection type implant shows good adaption to occlusal force, it has potential for abutment sinking as loads are given. When locking taper connection type implant is used, satisfactory loads are recommended for precise abutment location.

Abutment Sinking and Fitness of Conical Internal Connection Implant System according to Loading Condition (하중조건에 따른 원추형 내측연결 임플랜트 시스템에서 지대주 침하 및 적합에 관한 연구)

  • Lee, Hal-La;Kim, Hee-Jung;Son, Mee-Kyoung;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.1
    • /
    • pp.77-89
    • /
    • 2008
  • The purpose of this study was to evaluate internal conical abutment sinking and fitness according to the loading condition. In this study, Alloden implant fixture and two abutment(conventional, FDI) systems were used. Each abutment was applied 1 time of finger force, 3 times of malleting force, 5 times of 20kg and extra several times to the fixture until the amount of abutment singking showed no change. Then, the length of abutment to fixture which was binding lightly with no pressure state was measured by Vernier caliper. After loading application, the length was remeasured and the amount of sinking was calculated. The implant was buried in unsaturated polyester (Epovia, Cray Valley Inc. Korea) for making a comparison between the change of length and fitness of abutment-fixture connection part. Then All samples were cross-sectioned with high speed precision cut-off(accutom-5, Struers, Denmark). Finally, The result were observed and analyzed using FE-SEM (field emission scanning electron microscopy).

FINITE ELEMENT ANALYSIS OF MANDIBULAR STRESSES AND DENTURE MOVEMENTS INDUCED BY OVERDENTURES (Overdenture 하에서 하악응력 및 의치의 변위에 관한 유한요소법적 분석)

  • Kim, Joung-Hee;Chung, Chae-Heon;Cho, Kyu-Zong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.28 no.1
    • /
    • pp.63-94
    • /
    • 1990
  • The purpose of this study was to analyze the displacement and the magnitude and the mode of distribution of the stresses in the lower overdenture, the mucous membrane, the abutment tooth and the mandibular supporting bone when various denture base materials, such as acrylic resin and 0.5mm metal base, and various denture base designs were subjected to different loading schemes. For this study, the two-dimensional finite element method was used. Mandibular arch models, with only canine remaining, were fabricated. In the first denture base design, a space, approximately 1mm thick, was prepared between the denture and the dome abutment. In the second denture base design, contact between the denture and the dome abutment was eliminated except the contact of the occlusal third of the abutment. In order to represent the same physiological condition as the fixed areas of the mandible under loading schemes, the eight nodes which lie at the mandibular angle region, the coronoid process and the mandibular condyle were assumed to be fixed. Each model was loaded with a magnitude of 10 kgs on the first molar region(P1) and 7 kgs on the central incisal region (P2) in a vertical direction. Then the force of 10 kgs was applied distributively from the first premolar to the second molar of each model in a vertical direction(P3). The results were as follows. : 1. When the testing vertical loads were given to the selected points of the overdenture, the overdenture showed the rotatory phenomenon, as well as sinking and the displacements of alveolar ridge, abutment and lower border of mandible under the metal base overdenture were less than those under the acrylic resin overdenture. 2. The maximum principal stresses(the maximum tensile stresses) being considered, high tensile stresses occured at the buccal shelf area, the posterior region of the ridge crest and the anterior border region of the mandibular ramus. 3. The minimum principal stresses(the maximum compressive stresses) being considered, high compressive stresses occured at the inferior and posterior border region of the mandible, the mandibular angle and the posterior border region of the mandibular ramus. 4. The vertical load on the central incisal region(P2) produced higher equivalent stress in the mandible than that on any other region(P1, P3) because of the long lever arm distance from the fixed points to the loading point. 5. Higher equivalent stresses were distributed throughout the metal base overdenture than the resin base overdenture under the same loading condition. 6. The case of occlusal third contact of the abutment to the denture produced higher equivalent stresses in the abutment, the mandibular area around the abutment and the overdenture than the case of a 1mm space between the denture and the abutment. 7. Without regard to overdenture base materials and designs, the amounts and distribution patterns of equivalent stresses under the same loading condition were similar in the mucous membrane.

  • PDF