• 제목/요약/키워드: absorption capabilities

검색결과 62건 처리시간 0.026초

SWIR 이미지 센서 기술개발 동향 및 응용현황

  • 이재웅
    • 세라미스트
    • /
    • 제21권2호
    • /
    • pp.59-74
    • /
    • 2018
  • Imaging in the Short Wave Infrared (SWIR) provides several advantages over the visible and near-infrared regions: enhanced image resolution in in foggy or dusty environments, deep tissue penetration, surveillance capabilities with eye-safe lasers, assessment of food quality and safety. Commercially available SWIR imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits(ROIC) by indium bump bonding Infrared image sensors made of solution-processed quantum dots have recently emerged as candidates for next-generation SWIR imagers. They combine ease of processing, tunable optoelectronic properties, facile integration with Si-based ROIC and good performance. Here, we review recent research and development trends of various application fields of SWIR image sensors and nano-materials capable of absorption and emission of SWIR band. With SWIR sensible nano-materials, new type of SWIR image sensor can replace current high price SWIR imagers.

Adaptive Re-reflecting Wave Control In Plunger Type Wave Maker System: Experiments In Two Dimensional Wave Basin

  • Park, Gun-Il;Kim, Ki-Jung;Park, Jae-Woong;Lee, Jin-Ho
    • Journal of Ship and Ocean Technology
    • /
    • 제7권1호
    • /
    • pp.13-18
    • /
    • 2003
  • The control performances for active re-reflecting wave control suggested in the previous paper have been verified in cases of regular and irregular waves in a real two dimensional wave basin. For regular waves, the control performances are investigated in terms of reflection coefficients, expected amplitudes of propagating waves and wave absorbing capabilities after cessation of wave generation, compared with those of no-control cases. For irregular waves similar verification procedures were adopted. Though there are certain constraints due to the geometrical non-linearity of wave maker and certain nonlinear characteristics due to the near field and gravity waves these experiments show that the control logic could be useful in realizing re-reflecting wave control in conditions of real wave basin.

Environmental Genomics Related to Environmental Health Biomarker

  • Kim, Hyun-Mi;Kim, Dae-Seon;Chung, Young-Hee
    • Molecular & Cellular Toxicology
    • /
    • 제2권2호
    • /
    • pp.75-80
    • /
    • 2006
  • Biomarkers identify various stages and interactions on the pathway from exposure to disease. The three categories of biomarkers are those measuring susceptibility, exposure and effect. Susceptibility biomarkers are identifiable genetic variations affecting absorption, metabolism or response to environmental agents. Biomarkers of exposure indicate the amount of a foreign compound that is absorbed into the body. Biological measurements performed on human tissues are vastly expanding the capabilities of classical epidemiology, which has relied primarily on estimates of human exposure derived form chemical levels in the air, water, and other exposure routes. Biomarkers of exposure indicate the amount of a foreign compound that is absorbed into the body. Biological measurements performed on human tissues are vastly expanding the capabilities of classical epidemiology, which has relied primarily on estimates of human exposure derived form chemical levels in the air, water, and other exposure routes. The biomarker response is typical of chemical pollution by specific classes of compound, such as (i) heavy metals (mercury, cadmium, lead, zinc), responsible for the induction of metallothionein synthesis, and (ii) organochlorinated pollutants (PCBs, dioxins, DDT congeners) and polycyclic aromatic hydrocarbons (PAHs), which induce the mixed function oxygenase (MFO) involved in their bio transformations and elimination. Currently genomic researches are developed in human cDNA clone subarrays oriented toward the expression of genes involved in responses to xenobiotic metabolizing enzymes, cell cycle components, oncogenes, tumor suppressor genes, DNA repair genes, estrogen-responsive genes, oxidative stress genes, and genes known to be involved in apoptotic cell death. Several research laboratories in Korea for kicking off these Environmental Genomics were summarized.

High performance of inverted polymer solar cells

  • Lee, Hsin-Ying;Lee, Ching-Ting;Huang, Hung-Lin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.61.2-61.2
    • /
    • 2015
  • In the past decades, green energy, such as solar energy, wind power, hydropower, biomass energy, geothermal energy, and so on, has been widely investigated and developed to solve energy shortage. Recently, organic solar cells have attracted much attention, because they have many advantages, including low-cost, flexibility, light weight, and easy fabrication [1-3]. Organic solar cells are as a potential candidate of the next generation solar cells. In this abstract, to improve the power conversion efficiency and the stability, the inverted polymer solar cells with various structures were developed [4-6]. The novel cell structures included the P3HT:PCBM inverted polymer solar cells with AZO nanorods array, with pentacene-doped active layer, and with extra P3HT interfacial layer and PCBM interfacial layer. These three difference structures could respectively improve the performance of the P3HT:PCBM inverted polymer solar cells. For the inverted polymer solar cells with AZO nanorods array as the electronic transportation layer, by using the nanorod structure, the improvement of carrier collection and carrier extraction capabilities could be expected due to an increase in contact area between the nanorod array and the active layer. For the inverted polymer solar cells with pentacene-doped active layer, the hole-electron mobility in the active layer could be balanced by doping pentacene contents. The active layer with the balanced hole-electron mobility could reduce the carrier recombination in the active layers to enhance the photocurrent of the resulting inverted polymer solar cells. For the inverted polymer solar cells with extra P3HT and PCBM interfacial layers, the extra PCBM and P3HT interfacial layers could respectively improve the electron transport and hole transport. The extra PCBM interfacial layer served another function was that led more P3HT moving to the top side of the absorption layer, which reduced the non-continuous pathways of P3HT. It indicated that the recombination centers could be further reduced in the absorption layer. The extra P3HT interfacial layer could let the hole be more easily transported to the MoO3 hole transport layer. The high performance of the novel P3HT:PCBM inverted polymer solar cells with various structures were obtained.

  • PDF

고장력강판 적용을 위한 자동차 범퍼빔 구조성능의 기초연구 (A Preliminary Study on the Structural Performance of the Bumper-Beams for High-Strength Steel Applications)

  • 강종수;송명환;임재용
    • 한국산학기술학회논문지
    • /
    • 제18권6호
    • /
    • pp.78-84
    • /
    • 2017
  • 최근 자동차 업계는 연비향상 및 안전성 강화를 위해 경량 신소재를 적용하여 부품의 경량화를 추구하고 있다. 이를 위해 차체 부품 소재로서 고장력강판의 적용 비중이 50%를 넘고 있는 실정이다. 이에, 본 논문에서는 범퍼빔 부품의 소재로 고장력강판 적용을 위한 기초 연구로서 소재 및 두께 변경에 따른 범퍼빔의 구조강성과 에너지 흡수능력을 해석적 방법으로 비교 평가하였다. 우선 고장력강판을 범퍼빔에 적용하기 위해 기존의 범퍼빔 단면형상과는 다른 타입의 범퍼빔 단면형상을 설계하였으며, 굽힘해석을 통해 설계된 범퍼빔이 충분한 구조성능, 즉, 구조강성과 굽힘하중력을 가지고 있는지 조사하였다. 중앙접합부의 형상에 따라 굽힘에 대한 구조성능은 현저한 차이가 관찰되지는 않았으며, 25ton, 7.5ton/mm내외의 충분한 굽힘저항력과 강성을 가지고 있는 것으로 조사된다. 또한, 충돌해석을 통해 소재 및 두께를 변경하였을 경우의 효과를 비교평가하였다. 해석결과 고장력강판을 범퍼빔에 적용하기 위해서는 두께를 줄임으로써 기존소재에 버금가는 에너지흡수성능을 구현할 수 있으며, 동시에 뚜렷한 경량화를 이룰 수 있을 것으로 판단된다. 본 기초연구를 토대로 고장력강판 범퍼빔의 구조성능 개선을 위한 향후 연구방향에 대해 제시하였다.

Utilization of Sapwood Waste of Fast-Growing Teak in Activated Carbon Production and Its Adsorption Properties

  • Johanes Pramana Gentur SUTAPA;Ganis LUKMANDARU;Sigit SUNARTA;Rini PUJIARTI;Denny IRAWATI;Rizki ARISANDI;Riska DWIYANNA;Robertus Danu PRIYAMBODO
    • Journal of the Korean Wood Science and Technology
    • /
    • 제52권2호
    • /
    • pp.118-133
    • /
    • 2024
  • The sapwood portion of fast-growing teak is mostly ignored due to its inferior quality. One of the possibilities for utilizing sapwood waste is to convert it into activated carbon that has good adsorption capabilities. The raw materials used in this research were sapwood of 14-year-old fast-growing teak sapwood (FTS) waste, which was taken from three trees from community forests in Wonosari, Gunungkidul, Yogyakarta Special Region. FTS waste was taken from the bottom of the tree up to a height of 1.3 m. The activation process is conducted with an activation temperature of 750℃, 850℃, and 950℃. The heating duration consists of three variations: 30 min, 60 min, and 90 min. The quality evaluation parameters of activated carbon include yield, moisture content, volatile matter content, ash content, fixed carbon content, adsorption capacity of benzene, adsorption capacity of methylene blue, and adsorption capacity of iodine. The results showed that the activated carbon produced had the following quality parameters: yield of 75.61%; moisture content of 1.27%; volatile matter content of 9.98%; ash content of 5.43%; fixed carbon content of 84.58%; benzene absorption capacity of 8.58%; methylene blue absorption capacity of 87.73 mg/g; and iodine adsorption capacity of 948.19 mg/g. It can be concluded that activated carbon from FTS waste has good iodine adsorption, which fulfilled the SNI 06-3730-1995 quality standard. Due to the iodine adsorption ability of FTS waste activated carbon, the conversion of FTS waste to activated carbon is categorized as a potential method to increase the value of this material.

Ge-Se-Te계 칼코지나이드 유리의 결정 생성 현상 및 특성 (Properties and Crystallization Characteristics of Ge-Se-Te Glasses)

  • 이용우;허종
    • 한국세라믹학회지
    • /
    • 제32권2호
    • /
    • pp.239-247
    • /
    • 1995
  • Chalcogenide glasses with compositions of Ge10Se90-xTex(X=0~50 at.%) were prepared in order to investigate the effects of Te substitution on the transmission characteristics of Ge-Se glasses in the 8~12 ${\mu}{\textrm}{m}$ wavelength region. Absorption coefficients were observed to decrease with Te addition, indicating the improved transmission capabilities of Ge-Se-Te glasses as compared to binary Ge-Se glasses. XRD analysis of crystallized glasses suggested the formation of weaker Se-Te and/or Te-Te bonds with addition of Te substituting for Se in stronger Se-Se bonds. Incorporation of Te in excess of 20at% resulted in the formation of hexagonal Te phases when crystallized. It is speculated that the presence of Te-Te bonds with highly metallic bond character resulted in the enhanced crystallization tendencies of glasses. Fromation of Te-rich chains through gradual replacement of Se-Se with Se-Te and/or Te-Te bonds was further supported by decreases in glass transition and crystallization temperatures.

  • PDF

Computer based estimation of backbone curves for hysteretic Response of reinforced concrete columns under static cyclic lateral loads

  • Rizwan, M.;Chaudhary, M.T.A.;Ilyas, M.;Hussain, Raja Rizwan;Stacey, T.R.
    • Computers and Concrete
    • /
    • 제14권2호
    • /
    • pp.193-209
    • /
    • 2014
  • Cyclic test of the columns is of practical relevance to the performance of compression members during an earthquake loading. The strength, ductility and energy absorption capabilities of reinforced concrete (RC) columns subjected to cyclic loading have been estimated by many researchers. These characteristics are not normally inherent in plain concrete but can be achieved by effectively confining columns through transverse reinforcement. An extensive experimental program, in which performance of four RC columns detailed according to provisions of ACI-318-08 was studied in contrast with that of four columns confined by a new proposed technique. This paper presents performance of columns reinforced by standard detailing and cast with 25 and 32 MPa concrete. The experimentally achieved load-displacement hysteresis and backbone curves of two columns are presented. The two approaches which work in conjunction with Response 2000 have been suggested to draw analytical back bone curves of RC columns. The experimental and analytical backbone curves are found in good agreement. This investigation gives a detail insight of the response of RC columns subjected to cyclic loads during their service life. The suggested analytical procedures will be available to the engineers involved in design to appraise the capacity of RC columns.

Delphi기법에 의한 기계공학기술과 다른 기술분야의 국제적 기술수준과 국제기술협력 가능성에 대한 비교연구

  • 권영주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.794-798
    • /
    • 1997
  • We provide a set of information on technologies to draw meaningful action plans for the inter- nationalization of National R&D activities. In this study, we employed a modified Delphi method to evaluate level od our technological capabilities and developed countries' as well. We investigated technology acquistion methodologies,technology characteristics and various aspects of international cooperation in terms of technology. Then we analyzed final responses of participants (i.e, the third round results of Delphi method) to see the correlation among various factors in developing tehnologies through international R&D cooperation. The technology classification used in this research was developed by STEPI (Science and Technology Policy Institute). In conclusion, levels of our technologies were investigated to be between the stage of imitating/absorbing advanced technologies and the stage of digesting acquired technologies. Especially, comparing with other technologies, mechanical engineering was evaluated to be almost near the stage of digesting acquired technology (the middle level stage of technology). Out overal technological capabilites were evaluated to be 40~60% of top level countries'.

  • PDF

Effectiveness of some conventional seismic retrofitting techniques for bare and infilled R/C frames

  • Kakaletsis, D.J.;David, K.N.;Karayannis, C.G.
    • Structural Engineering and Mechanics
    • /
    • 제39권4호
    • /
    • pp.499-520
    • /
    • 2011
  • The effectiveness of a technique for the repair of reinforced concrete members in combination with a technique for the repair of masonry walls of infilled frames, damaged due to cyclic loading, is experimentally investigated. Three single - story, one - bay, 1/3 - scale frame specimens are tested under cyclic horizontal loading, up to a drift level of 4%. One bare frame and two infilled frames with weak and strong infills, respectively, have been tasted. Specimens have spirals as shear reinforcement. The applied repair technique is mainly based on the use of thin epoxy resin infused under pressure into the crack system of the damaged RC joint bodies, the use of a polymer modified cement mortar with or without a fiberglass reinforcing mesh for the damaged infill masonry walls and the use of CFRP plates to the surfaces of the damaged structural RC members, as external reinforcement. Specimens after repair, were retested in the same way. Conclusions concerning the effectiveness of the applied repair technique, based on maximum cycles load, loading stiffness, and hysteretic energy absorption capabilities of the tested specimens, are drawn and commented upon.