• Title/Summary/Keyword: absorbed energy

Search Result 825, Processing Time 0.029 seconds

3-D resist profile simulation using string model on E-beam lithography (전자빔 리토그라피에서 스트링모델을 이용한 3차원 리지스트 프로파일 시뮬레이션)

  • 서태원;함영목;전국진;이종덕
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.144-150
    • /
    • 1996
  • The purpose of this paper is to develop a simulation program to predict resist prifile in electron-beam lithography, where the main issue is proximity effect. The simualtion program composes of monte-carlo simulation, exposure simulation and development simulation. In nonte-carlo simulation, the absorbed energy in the resist is calculated when one electron is incident into resist, using hybrid model on the basis of the rutherford differential scattering cross section and moller theory. In exposure simulation, the absorbed energy in the resist is calculated when electrons are incident in exposure pattern. In the program, the developed profile depending on time is obtained by string model. The 0.2$\mu$m and the 0.3$\mu$m line and space patterns are experimentally delineated and compared to the simulation results to check the relevance of the program.

  • PDF

Characteristics of Specific Absorption Rate (SAR) in Electromagnetic (EM) Dosimetry

  • Hwang, Sun-Tae;Choi, Kil-Oung
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.2
    • /
    • pp.109-114
    • /
    • 2000
  • The SI unit of specific absorption rate (SAR) in W/kg in the electromagnetic (EM) field as non-ionizing radiation is exactly same as the SI unit of absorbed dose rate in Gy/s in the ionizing radiation field. The SI unit of both physical quantities can be expressed in $[m^{\cdot}s^{-3}]$. Where, the unit of absorbed dose, Gy stands for Gray. In EM biological interactions, the SAR equations are derived and the characteristics of EM field energy absorption in terms of the SAR are discussed and described on the mathematical basis.

  • PDF

Bending Collapse Characteristics of Hat Section Beam Filled with Structural Foam (폼 충진 모자단면 빔의 굽힘붕괴 특성)

  • Lee, Il-Seok;Kang, Sung-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.92-99
    • /
    • 2006
  • Design capability for high safety vehicle with light weight is crucial to enhancing competitive power in vehicle market. The structural foam can contribute to restraining section distortion in body members undergoing bending collapse at vehicle crash. In this study, first, the validation of analysis model including structural foam model for simulating fracture behavior was discussed, and the bending collapse characteristics of five representative section types were analyzed and compared. Next, with changing the laminate foam shape, load carrying capability and absorbed energy were observed. The results suggests a design strategy of body members filled with laminate foam, leading to effectively elevating bending collapse characteristics with weight increase in the minimum.

Study on the Design of Streeing Wheels for Maximmum Protection of Drivers during Crash (충돌안정성을 고려한 승용차용 조향핸들의 최적설계에 관한 연구)

  • 이윤형;김권희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.130-140
    • /
    • 1999
  • During crash of a vehicle, most of the kinetic energy of the driver is absorbed by the steering system. The deformation characteristics of the steering system has significant effects on the injury of the driver. A part of the energy is absorbed by the steering wheel and another part by the collapsable steering column. It is believed that strength distribution between the wheel and the column has an important effect on the injury of the driver. A design criterion is suggested for steering wheels for maximum protection of drivers. Tagushi method is used to analyse the effects of design parameters.

  • PDF

The Laser hardening Characteristics of the Alloy Tool Steels STD11 (금형용 합금공구강 STD11의 레이저 표면경화 특성)

  • Cho, Y.M.;Kim, J.D.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.4
    • /
    • pp.230-236
    • /
    • 1993
  • The laser beam hardening has been experimentally tried to find the hardened characteristics of STD11. Experiment was performed on the optimum hardening condition with 2kW $CO_2$ laser. The microstructure of the hardened layers was observed using the microscope. The hardened zones exhibits very high Vickers microhardness of 720 Hv, however, the deoxidation was observed under the surface of hardened area. The case depth of hardened zones is about 0.6mrn and case width is 4mm. FEM-simulation on laser surface hardening of STD11 steel are described. With the proper assumption of the absorbed energy density, the calculated case depth and width in 2 kW $CO_2$ laser hardening were in good agreement with the experimental result. It was found that there is optimum absorbed energy density of STD11.

  • PDF

An Evaluation of Dynamic Crack Initiation Toughness in SS41 Steel Welding (SS41강 용접부의 동적균열개시인성 평가)

  • 정재강;김건호
    • Journal of Welding and Joining
    • /
    • v.12 no.2
    • /
    • pp.108-118
    • /
    • 1994
  • In the present study, the dynamic crack initiation toughness and total absorbed energy behavior of Heat Affected Zone(HAZ) was experimentally evaluated for SS41 steel welding. The materials were submerged arc-welded SS41 steel plate with thickness 19mm. The test temperature range was from $20^{\circ}C$(room temperature) to $-70^{\circ}C$ The HAZ of welding were divided into three sub-zones for analysis; H1, H2, H3, according to the distance from the fushion line. From the experimental studies, the reference value of dynamic crack initiation toughness $(J_{Id(R)})$ can be use to estimate dynamic fracture toughness characteristics of steel welding.

  • PDF

Experimental Study on the Seismic Response of High-Rise RC Bearing-Wall Structures with Irregularity (고층 RC 벽식 비정정 구조물의 지진거동에 관한 실험적 연구)

  • 이한선;고동우
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.321-328
    • /
    • 2003
  • The objective of this study is to investigate the seismic response of high-rise RC bearing-wall structures with irregularity. For this purpose, three 1:12 scale 17-story reinforced concrete model structures were constructed according to the similitude law, in which the upper 15 stories have a bearing-wall system while the lower 2-story frames have three different layouts of the plan : The first one is a moment-resisting frame system, the second has a infilled shear wall with symmetric plan and the third has a infilled shear wall with eccentricity, Then, these models were subjected to a series of earthquake excitations. The test results show the followings: 1) the existence of shear wall reduced greatly shear deformation at the piloti frame, but has almost the negligible effect on the reduction of the overturning-moment angle, 2) the frame with shear wall resists most of overturning moment in severe earthquake, 3) the torsional behavior is almost independent of the translational, 4) the absorbed energy due to the overturning deformation has the largest portion in the total absorbed energy.

  • PDF

The Crushing Behaviour of Thin Plates Subjected to Compression -Ultimate Load and Energy Absorption-

  • Jae-Wook,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.1
    • /
    • pp.33-39
    • /
    • 1982
  • An experimental investigation on the ultimate load and energy absorption of thin plates is presented, which enables the damage to ship involved in a collision to be estimated in terms of the lost kinetic energy. The derived formulae are based upon experimental analysis and compared with theoretical presentations published by some authors. A relationship is found between the absorbed energy and the volume of damaged steel plates.

  • PDF

Effects of Tempering Treatment on Microstructure and Mechanical Properties of Cu-Bearing High-Strength Steels (템퍼링에 따른 Cu 첨가 고강도강의 미세조직과 기계적 특성)

  • Lee, Sang-In;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.550-555
    • /
    • 2014
  • The present study deals with the effects of tempering treatment on the microstructure and mechanical properties of Cu-bearing high-strength steels. Three kinds of steel specimens with different levels of Cu content were fabricated by controlled rolling and accelerated cooling, ; some of these steel specimen were tempered at temperatures ranging from $350^{\circ}C$ to $650^{\circ}C$ for 30 min. Hardness, tensile, and Charpy impact tests were conducted in order to investigate the relationship of microstructure and mechanical properties. The hardness of the Cu-added specimens is much higher than that of Cu-free specimen, presumably due to the enhanced solid solution hardening and precipitation hardening, result from the formation of very-fine Cu precipitates. Tensile test results indicated that the yield strength increased and then slightly decreased, while the tensile strength gradually decreased with increasing tempering temperature. On the other hand, the energy absorbed at room and lower temperatures remarkably increased after tempering at $350^{\circ}C$; and after this, the energy absorbed then did not change much. Suitable tempering treatment remarkably improved both the strength and the impact toughness. In the 1.5 Cu steel specimen tempered at $550^{\circ}C$, the yield strength reached 1.2 GPa and the absorbed energy at $-20^{\circ}C$ showed a level above 200 J, which was the best combination of high strength and good toughness.

Structural Interpretation of Properties and Flavors of Drugs (사기오미론(四氣五味論)의 구조적 해석)

  • Cho, Yong-Ju;Kim, Jin-Ju
    • Korean Journal of Oriental Medicine
    • /
    • v.11 no.2
    • /
    • pp.23-33
    • /
    • 2005
  • Four Properties and five Flavors of Drugs is interpreted by adaptation of human body to the environmental theory(天人相應). The Structural model of the body is compared with sky, earth, sun and moon (天, 地, 日, 月). The natural changes of the four seasons give rise to that of Four Properties and five Flavors of Drugs. On equal terms it is happened in our body. On this study we can draw an analogy between sky, earth, sun & moon (天, 地, 日, 月) and the body. The six bu(六腑) is related to the earth, the five ju(五主) to the sky, the five jang(五臟) to the sun, the meridians system (經絡) to the moon. When spring, the air is warm, the water element of the earth is ascending, and the earth gives birth to the sour flavor. Like this, the water element is absorbed by six bu and then is ascended to the meridian system. When summer, the air is hot and the water element of the earth is floated, the earth make the bitter flavor. In the same way, the six bu absorbed the hot air from the five ju and the water element is quickly absorbed by six bu and then the water element is ascended to the meridian system. When rainy season (長夏), the earth creates the sweet flavor The sweet flavor give warmer energy to the five jang and the six bu. When autumn, the earth change the sweet flavor into pungent. The earth gives warmer energy to the sky, because of cool weather According to same process, the pungent flavor give warmer energy to the five jang and the six bu, and the meridian system gets back the water element from the five ju. When winter, the air is cold and the water element of the earth is hidden. The sky and the earth are not interchangeable. At that time, the earth produce the salty flavor and the water element is keeping in the meridian system.

  • PDF