This study uses digital imaging and communications in medicine (DICOM) files acquired after CT scan to obtain the absorbed dose distribution inside the body by using the patient's actual anatomical data; uses geometry and tracking (Geant)4 as a way to obtain the accurate absorbed dose distribution inside the body. This method is easier to establish the radioprotection plan through estimating the absorbed dose distribution inside the body compared to the evaluation of absorbed dose using thermo-luminescence dosimeter (TLD) with inferior reliability and accuracy because many variables act on result values with respect to the evaluation of the patient's absorbed dose distribution in diagnostic imaging and the evaluation of absorbed dose using phantom; can contribute to improving reliability accuracy and reproducibility; it makes significance in that it can implement the actual patient's absorbed dose distribution, not just mere estimation using mathematical phantom or humanoid phantom. When comparing the absorbed dose in polymethly methacrylate (PMMA) phantom measured in metal oxide semiconductor field effect transistor (MOSFET) dosimeter for verification of Geant4 and the result of Geant4 simulation, there was $0.46{\pm}4.69%$ ($15{\times}15cm^2$), and $-0.75{\pm}5.19%$ ($20{\times}20cm^2$) difference according to the depth. This study, through the simulation by means of Geant4, suggests a new way to calculate the actual dose of radiation exposure of patients through DICOM interface.
The purpose of our study was to determine the entrance surface dose and absorbed dose in ovary when using the metal speculum and plastic speculum in hysterosalpingography respectively. The examinations was performed in anthropomorphic phantom into which calibrated photoluminescence glass dosimeter were placed on symphysis pubis level surface and ovary area. We checked average fluoroscopy time and spot expose times during the hysterosalpingography. It was average fluoroscopy time 58 sec, spot expose 5 times. We divided the subjects into two different groups to used metal and plastic speculum. We measured 10 times of absorbed dose in the same condition of the anthropomorphic phantom. We compared two groups adsorbed dose on ovary with speculum material-related. The entrance surface dose on of plastic Speculum using group was average 17.23 mGy, absorbed dose on ovary was average 3.51 mGy. The entrance surface dose on ovary of metal Speculum using group was average 19.95 mGy, absorbed dose on ovary was average 4.14 mGy. Plastic speculum using group shows a decrease absorbed dose(17.9%) as compared with metal speculum using group. The method of plastic speculum using in hysterosalpingography. might provide us with lower radiation dose, especially in patients with childbearing stage.
Due to the Co-60 source size, the penumbra in Co-60 teletheraphy poses a serious problem, even if the extended collimators are used, Here an empirical formula for the calculation of integral absorbed dose in the penumbra region was derived. Through a numerical calculation, the penumbra effect on integral absorbed dose was investigated. The longer the source-to-skin distance, the larger the integral absorbed dose of penumbra region, and the larger the source diameter, the larger the integral absorbed dose of penumbra region. It was also found that in some case the integral absorbed dose in penumbra region becomes several times larger than the integral absorbed dose of treatment region itself if the source-to-skin distance becomes greater. Therefore, one must consider the penumbra effect in Co-60 teletherapy.
Background: After the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, biological alterations in the natural biota, including morphological changes of fir trees in forests surrounding the power plant, have been reported. Focusing on the terminal buds involved in the morphological formation of fir trees, this study developed a method for estimating the absorbed radiation dose rate using radionuclide distribution measurements from tree organs. Materials and Methods: A phantom composed of three-dimensional (3D) tree organs was constructed for the three upper whorls of the fir tree. A terminal bud was evaluated using Monte Carlo simulations for the absorbed dose rate of radionuclides in the tree organs of the whorls. Evaluation of the absorbed dose targeted 131I, 134Cs, and 137Cs, the main radionuclides subsequent to the FDNPP accident. The dose contribution from each tree organ was calculated separately using dose coefficients (DC), which express the ratio between the average activity concentration of a radionuclide in each tree organ and the dose rate at the terminal bud. Results and Discussion: The dose estimation indicated that the radionuclides in the terminal bud and bud scale contributed to the absorbed dose rate mainly by beta rays, whereas those in 1-year-old trunk/branches and leaves were contributed by gamma rays. However, the dose contribution from radionuclides in the lower trunk/branches and leaves was negligible. Conclusion: The fir tree model provides organ-specific DC values, which are satisfactory for the practical calculation of the absorbed dose rate of radiation from inside the tree. These calculations are based on the measurement of radionuclide concentrations in tree organs on the 1-year-old leader shoots of fir trees. With the addition of direct gamma ray measurements of the absorbed dose rate from the tree environment, the total absorbed dose rate was estimated in the terminal bud of fir trees in contaminated forests.
Obtaining knowledge of the absorbed dose up-taken by a certain material when it is exposed to a specific ionizing radiation field is a very important task. Even though there are a plenitude of methods for determining the absorbed dose, each one has its own strong points and also drawbacks. In this article, an innovative idea for the development of a new gamma-ray dosimetry system is proposed. The method described in this article is based on optical colorimetry techniques. A color standard is fixed to the back of a BK-7 glass plate and then placed in a point in space where the absorbed dose needs to be determined. Gamma-ray-induced defects (color centers) in the glass plate start occurring, leading to a degree of saturation of the standard color, which is proportional, on a certain interval, to the absorbed dose. After the exposure, a high-quality digital image of the sample is taken, which is then processed (MATLAB), and its equivalent $I_{RGB}$ intensity value is determined. After a prior corroboration between various well-known absorbed dose values and their corresponding $I_{RGB}$ values, a calibration function is obtained. By using this calibration function, an "unknown" up-taken dose value can be determined.
Journal of Korean Academy of Oral and Maxillofacial Radiology
/
v.20
no.1
/
pp.103-112
/
1990
The purpose of this study was to estimate absorbed dose of each important anatomic site of phantom (RT-2l0 Head & Neck Section/sup R/, Humanoid Systems Co., U.S.A.) head in occlusal radiography. X-radiation dosimetry at 12 anatomic sites in maxillary anterior topography, maxillary posterior topography, mandibular anterior cross-section, mandibular posterior cross-section, mandibular anterior topographic, mandibular posterior topographic occlusal projection was performed with calcium sulfate thermoluminescent dosimeters under 70Kvp and 15mA, 1/4 second (8 inch cone) and 1 second (16 inch cone) exposure time. The results obtained were as follows: Skin surface produced highest absorbed dose ranged between 3264 mrad and 4073 mrad but there was little difference between projections. In maxillary anterior topographic occlusal radiography, eyeballs, maxillary sinuses, and pituitary gland sites produced higher absorbed doses than those of other sites. In maxillary posterior topographic occlusal radiography, exposed eyeball site and exposed maxillary sinus site produced high absorbed doses. In mandibular anterior cross-sectional occlusal radiography, all sites were produced relatively low absorbed dose except eyeball sites. In mandibular posterior cross-sectional occlusal radiography, exposed eyeball site and exposed maxillary sinus site were produced relatively higher absorbed doses than other sites. In mandibular anterior topographic occlusal radiography, maxillary sinuses, submandibular glands, and thyroid gland sites produced high absorbed doses than other sites. In mandibular posterior topographic occlusal radiography, submandibular gland site of the exposed side produced high absorbed dose than other sites and eyeball site of the opposite side produced relatively high absorbed dose.
Purpose: The primary objective of this study was to estimate the radiation absorbed doses in certain critical organs in the head and neck region with an Orthopos plus, a Panelipse, and a Panex-E machines. The second objective was to compare the absorbed doses between 5 inch by 12 inch and 6 inch by 12 inch image field for the Orthopos plus. Materials and Methods: Rando phantom and LiF TLD chips were used for dosimetry. The absorbed doses were measured at the thyroid gland, the submandibular gland, the parotid gland, the mouth floor, the maxillary sinus, the brain, the mandibular body, the mandibular ramus, the 2nd cervical spine and the skin over TMJ area. Results: The highest absorbed dose value was recorded at the mandibular ramus for the Orthopos plus with narrow image field. Higher absorbed dose values were recorded at the parotid gland, the mouth floor, the submandibular gland, and the 2nd cervical spine. The doses in the parotid gland were 597 μGy and 529 μGy with Orthopos plus, 638 μGy with Panelipse, and 1094μGy with Panex-E. Corresponding figures for the mandibular ramus were 2363 Gy and 1220 μGy, 248 μGy, and 118 μGy. The absorbed doses to the thyroid gland, the maxillary sinus, the brain, and the skin over TMJ were very low. Conclusion: Higher exposure values were recorded for the Orthopos plus than Panelipse and Panex-E. There was no significant differences of the absorbed doses according to the image field size.
The Journal of Korean Society for Radiation Therapy
/
v.10
no.1
/
pp.11-22
/
1998
The absolute absorbed dose can be determined according to the measurement conditions ; measurement material, detector, energy and calibration protocols. The purpose of this study is to compare the absolute absorbed dose due to the differences of measurement condition and calibration protocols for photon beams. Dosimetric measurements were performed with a farmer type PTW and NEL ionization chambers in water, solid water, and polystyrene phantoms using 6MV photon beams from Siemens linear accelerator. Measurements were made along the central axis of $10{\times}10cm$ field size for constant target to surface distance of 100cm for water, solid water and polystyrene phantom. Theoretical absorbed dose intercomparisons between TG21 and IAEA protocol were performed for various measurement combinations on phantom, ion chamber, and electrometer. There were no significant differences of absorbed dose value between TG2l and IAEA protocol. The differences between two protocols are within $1\%\;while\;the\;average\;value\;of\;IAEA\;protocol\;was\;0.5\%$ smaller than TG2l protocol. For the purpose of comparison, all the relative absorbed dose were nomalized to NEL ion chamber with Keithley electrometer and water phantom, The average differences are within $1\%,\;but\;individual\;discrepancies\;are\;in\;the\;range\;of\;-2.5\%\;to\;1.2\%$ depending upon the choice of measurement combination. The largest discrepancy of $-25\%$ was observed when NEL ion chamber with Keithley electrometer is used in solid water phantom. The main cause for this discrepancy is due to the use of same parameters of stopping power, absorption coefficient, etc. as used in water phantom. It should be mentioned that the solid water phantom is not recommended for absolute dose calibration as the alternative of water, since absorbed dose show some dependency on phantom material other than water. In conclusion, the trend of variation was not much dependent on calibration protocol. However, It shows that absorbed dose could be affected by phantom material other than water.
The absorbed dose for proton beam in water was calculated using the PTRAN code system. The proton interactions with water and the description on absorbed dose calculations are discussed, and the file structure and an execution example of the PTRAN codes are described. For 60, 100, 150, 200, and 250 MeV proton beams it is demonstrated that the absorbed dose is determined from the sum of Coulomb interactions and nuclear reactions, and that the Bragg peak feature depends On the energy straggling and multiple scattering. The PTRAN code was useful for studying the fundamental mechanism of the absorbed dose to water for clinical proton beams.
Cone beam Computed Tomography(CBCT) is an increasing trend in clinical applications due to its ability to increase the accuracy of radiation therapy. However, this leaded to an increase in exposure dose. In this study, the simulation using Monte Carlo method is performed and the absorbed dose of CBCT is analyzed and standardized data is presented. First, after simulating the CBCT, the photon spectrum was analyzed to secure the reliability and the absorbed dose of the tissue in the human body was evaluated using the MIRD phantom. Compared with SRS-78, the photon spectrum of CBCT showed similar tendency, and the average absorbed dose of MIRD phantom was 8.12 ~ 25.88 mGy depending on the body site. This is about 1% of prescription dose, but dose management will be needed to minimize patient side effects and normal tissue damage.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.