• Title/Summary/Keyword: absolute ozone density

Search Result 4, Processing Time 0.017 seconds

Ozone Condensation and Stable Supply by an Adsorption Method

  • Yang, Seong-Ho;Park, Yong-Pil;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.121-125
    • /
    • 2000
  • An ozone condenser by a selective adsorption on the silica gel surface is constructed. Ozone density is evaluated by three methods; ultraviolet absorption, thermal decomposition and Q-mass analyzing methods. Thermal decomposition method is found to be available to the density evaluation from dilute to highly condensed ozone. The highest ozone density condensed by the adsorption method is evaluated to be 97 mol%.

  • PDF

Ozone Dentisity Estimation and Stable Supply in the Growth Process of BSCCO Thin Film

  • Lee, Hee-Kab;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.45-49
    • /
    • 2000
  • An ozone condenser by a selective adsorption on the silica gel surface is constructed. Ozone density is evaluated by three methods; ultraviolet absorption, thermal decomposition and Q-mass analyzing methods. Thermal decomposition method is found to be available to the density evaluation from dilute to highly condensed ozone. The highest ozone density condensed by the adsorption method is evaluated to be 97 mol%.

  • PDF

Ozone Density Estimation and Stable Supply in the Thin Film Growth

  • Lim, Jung-Kwan;Park, Yong-Pil;Oh, Geum-Gon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.2
    • /
    • pp.42-45
    • /
    • 2001
  • An ozone condensation system is evaluated from the viewpoint of an ozone supplier for Bi-superconductor thin film growth. An ozone condenser by a selective adsorption on the silica gel surface is constructed. Ozone density is evaluated by three methods; ultraviolet absorption, thermal decomposition and Q-mass analyzing methods. Thermal decomposition method is found to be available to the density evaluation from dilute to highly condensed ozone. The highest ozone density condensed by the adsorption method is evaluated to be 97 mol%.

  • PDF

Estimation of surface nitrogen dioxide mixing ratio in Seoul using the OMI satellite data (OMI 위성자료를 활용한 서울 지표 이산화질소 혼합비 추정 연구)

  • Kim, Daewon;Hong, Hyunkee;Choi, Wonei;Park, Junsung;Yang, Jiwon;Ryu, Jaeyong;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.2
    • /
    • pp.135-147
    • /
    • 2017
  • We, for the first time, estimated daily and monthly surface nitrogen dioxide ($NO_2$) volume mixing ratio (VMR) using three regression models with $NO_2$ tropospheric vertical column density (OMIT-rop $NO_2$ VCD) data obtained from Ozone Monitoring Instrument (OMI) in Seoul in South Korea at OMI overpass time (13:45 local time). First linear regression model (M1) is a linear regression equation between OMI-Trop $NO_2$ VCD and in situ $NO_2$ VMR, whereas second linear regression model (M2) incorporates boundary layer height (BLH), temperature, and pressure obtained from Atmospheric Infrared Sounder (AIRS) and OMI-Trop $NO_2$ VCD. Last models (M3M & M3D) are a multiple linear regression equations which include OMI-Trop $NO_2$ VCD, BLH and various meteorological data. In this study, we determined three types of regression models for the training period between 2009 and 2011, and the performance of those regression models was evaluated via comparison with the surface $NO_2$ VMR data obtained from in situ measurements (in situ $NO_2$ VMR) in 2012. The monthly mean surface $NO_2$ VMRs estimated by M3M showed good agreements with those of in situ measurements(avg. R = 0.77). In terms of the daily (13:45LT) $NO_2$ estimation, the highest correlations were found between the daily surface $NO_2$ VMRs estimated by M3D and in-situ $NO_2$ VMRs (avg. R = 0.55). The estimated surface $NO_2$ VMRs by three modelstend to be underestimated. We also discussed the performance of these empirical modelsfor surface $NO_2$ VMR estimation with respect to otherstatistical data such asroot mean square error (RMSE), mean bias, mean absolute error (MAE), and percent difference. This present study shows a possibility of estimating surface $NO_2$ VMR using the satellite measurement.