• Title/Summary/Keyword: absolute model accuracy

Search Result 261, Processing Time 0.021 seconds

Demonstration of EPRI CHECWORKS Code to Predict FAC Wear of Secondary System Pipings of a Nuclear Power Plant

  • Lee, Sung-Ho;Seong Jegarl;Chung, Han-Sub
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.375-384
    • /
    • 1999
  • The credibility of CHECWORKS FAC model analysis was evaluated for plant application in a model plant chosen for demonstration. The operation condition at each pipe component was defined before the wear rate analysis by plant data base, water chemistry analysis, and network flow analysis. The predicted wear was compared with the measured wear for 57 sample components selected from 43 susceptible line groups analysed. The inspected 57 locations represent components of highest predicted wear in each line group. Both absolute value and relative ranking comparisons indicated reasonable correlations between the predicted and the measured values. Four components showed much higher measured wear rates than the predicted ones in the feed water train from main feed water pump discharge to steam generator, probably due to high hydrazine concentration operation the effect of which had not been incorporated into the CHECWORKS model. The measured wear was higher than the predicted one consistently for components with least susceptibility to FAC. It is believed that the conservatism maintained during UT data analysis dominated the measurement accuracy. A great deal of enhancement is anticipated over the current plant pipe management program when a comprehensive plant pipe management program is implemented based on the model analysis.

  • PDF

Precise Geoid Model for Korea from Gravity and GPS Data

  • Choi, Kwang-Sun;Won, Ji-Hoon;Shin, Young-Hong
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.181-188
    • /
    • 2006
  • The data, methodology, and the resulting accurate gravimetric geoid model for the Korean Peninsula (latitude from 32˚ N to 40˚ N and longitude from 124˚ E to 131˚ E) are presented in this study. The types of used data were a high degree geopotential model (the EGM96 spherical harmonic coefficient set), a set of 12,615 land gravity observations, 1,056,075 shipborne gravity observations, and KMS2002 gravity anomalies from satellite altimetry. The remove-restore technique was successfully applied to combining the above mentioned data sets using up to degree and order 112 of the EGM96 coefficient. The residual geoid was calculated with residual Free-Air anomaly values using the spherical Stokes' formula with a 37-km integration cap radius. The geoid model was referred to WGS84 geodetic system and was tested using a set of GPS/levelling geoid undulations. The absolute accuracy is 0.132 m and some improvement compared to the PNU95 geoid model was found.

  • PDF

Design of intelligent computing networks for a two-phase fluid flow with dusty particles hanging above a stretched cylinder

  • Tayyab Zamir;Farooq Ahmed Shah;Muhammad Shoaib;Atta Ullah
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.399-410
    • /
    • 2023
  • This study proposes a novel use of backpropagated Levenberg-Marquardt neural networks based on computational intelligence heuristics to comprehend the examination of hybrid nanoparticles on the flow of dusty liquid via stretched cylinder. A two-phase model is employed in the present work to describe the fluid flow. The use of desulphated nanoparticles of silver and molybdenum suspended in water as base fluid. The mathematical model represented in terms of partial differential equations, Implementing similarity transformationsis model is converted to ordinary differential equations for the analysis . By adjusting the particle mass concentration and curvature parameter, a unique technique is utilized to generate a dataset for the proposed Levenberg-Marquardt neural networks in various nanoparticle circumstances on the flow of dusty liquid via stretched cylinder. The intelligent solver Levenberg-Marquardt neural networks is trained, tested and verified to identify the nanoparticles on the flow of dusty liquid solution for various situations. The Levenberg-Marquardt neural networks approach is applied for the solution of the hybrid nanoparticles on the flow of dusty liquid via stretched cylinder model. It is validated by comparison with the standard solution, regression analysis, histograms, and absolute error analysis. Strong agreement between proposed results and reference solutions as well as accuracy provide an evidence of the framework's validity.

Deep Learning Framework with Convolutional Sequential Semantic Embedding for Mining High-Utility Itemsets and Top-N Recommendations

  • Siva S;Shilpa Chaudhari
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.44-55
    • /
    • 2024
  • High-utility itemset mining (HUIM) is a dominant technology that enables enterprises to make real-time decisions, including supply chain management, customer segmentation, and business analytics. However, classical support value-driven Apriori solutions are confined and unable to meet real-time enterprise demands, especially for large amounts of input data. This study introduces a groundbreaking model for top-N high utility itemset mining in real-time enterprise applications. Unlike traditional Apriori-based solutions, the proposed convolutional sequential embedding metrics-driven cosine-similarity-based multilayer perception learning model leverages global and contextual features, including semantic attributes, for enhanced top-N recommendations over sequential transactions. The MATLAB-based simulations of the model on diverse datasets, demonstrated an impressive precision (0.5632), mean absolute error (MAE) (0.7610), hit rate (HR)@K (0.5720), and normalized discounted cumulative gain (NDCG)@K (0.4268). The average MAE across different datasets and latent dimensions was 0.608. Additionally, the model achieved remarkable cumulative accuracy and precision of 97.94% and 97.04% in performance, respectively, surpassing existing state-of-the-art models. This affirms the robustness and effectiveness of the proposed model in real-time enterprise scenarios.

A study of Predicting International Gasoline Prices based on Multiple Linear Regression with Economic Indicators (경제지표를 활용한 다중선형회귀 모델 기반 국제 휘발유 가격 예측)

  • Myeongeun Han;Jiyeon Kim;Hyunhee Lee;Sein Kim;Minseo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.159-164
    • /
    • 2024
  • The domestic petroleum market is highly sensitive to changes in international oil prices. So, it is important to identify and respond to those changes. In particular, it is necessary to clearly understand the factors causing the price fluctuations of gasoline, which exhibits high consumption. International gasoline prices are influenced by global factors such as gasoline supplies, geopolitical events, and fluctuations in the U.S. dollar. However, previous studies have only focused on gasoline supplies. In this study, we explore the causal relationship between economic indicators and international gasoline prices using various machine learning-based regression models. First, we collect data on various global economic indicators. Second, we perform data preprocessing. Third, we model using Multiple linear regression, Ridge regression, and Lasso(Least Absolute Shrinkage and Selection Operator) regression. The multiple linear regression model showed the highest accuracy at 96.73% in test sets. As a result, Our Multiple linear regression model showed the highest accuracy at 96.73% in test sets. We will expect that our proposed model will be helpful for domestic economic stability and energy policy decisions.

Pig Image Learning for Improving Weight Measurement Accuracy

  • Jonghee Lee;Seonwoo Park;Gipou Nam;Jinwook Jang;Sungho Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.33-40
    • /
    • 2024
  • The live weight of livestock is important information for managing their health and housing conditions, and it can be used to determine the optimal amount of feed and the timing of shipment. In general, it takes a lot of human resources and time to weigh livestock using a scale, and it is not easy to measure each stage of growth, which prevents effective breeding methods such as feeding amount control from being applied. In this paper, we aims to improve the accuracy of weight measurement of piglets, weaned pigs, nursery pigs, and fattening pigs by collecting, analyzing, learning, and predicting video and image data in animal husbandry and pig farming. For this purpose, we trained using Pytorch, YOLO(you only look once) 5 model, and Scikit Learn library and found that the actual and prediction graphs showed a similar flow with a of RMSE(root mean square error) 0.4%. and MAPE(mean absolute percentage error) 0.2%. It can be utilized in the mammalian pig, weaning pig, nursery pig, and fattening pig sections. The accuracy is expected to be continuously improved based on variously trained image and video data and actual measured weight data. It is expected that efficient breeding management will be possible by predicting the production of pigs by part through video reading in the future.

Two Machine Learning Models for Mobile Phone Battery Discharge Rate Prediction Based on Usage Patterns

  • Chantrapornchai, Chantana;Nusawat, Paingruthai
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.436-454
    • /
    • 2016
  • This research presents the battery discharge rate models for the energy consumption of mobile phone batteries based on machine learning by taking into account three usage patterns of the phone: the standby state, video playing, and web browsing. We present the experimental design methodology for collecting data, preprocessing, model construction, and parameter selections. The data is collected based on the HTC One X hardware platform. We considered various setting factors, such as Bluetooth, brightness, 3G, GPS, Wi-Fi, and Sync. The battery levels for each possible state vector were measured, and then we constructed the battery prediction model using different regression functions based on the collected data. The accuracy of the constructed models using the multi-layer perceptron (MLP) and the support vector machine (SVM) were compared using varying kernel functions. Various parameters for MLP and SVM were considered. The measurement of prediction efficiency was done by the mean absolute error (MAE) and the root mean squared error (RMSE). The experiments showed that the MLP with linear regression performs well overall, while the SVM with the polynomial kernel function based on the linear regression gives a low MAE and RMSE. As a result, we were able to demonstrate how to apply the derived model to predict the remaining battery charge.

SUNSPOT AREA PREDICTION BASED ON COMPLEMENTARY ENSEMBLE EMPIRICAL MODE DECOMPOSITION AND EXTREME LEARNING MACHINE

  • Peng, Lingling
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.6
    • /
    • pp.139-147
    • /
    • 2020
  • The sunspot area is a critical physical quantity for assessing the solar activity level; forecasts of the sunspot area are of great importance for studies of the solar activity and space weather. We developed an innovative hybrid model prediction method by integrating the complementary ensemble empirical mode decomposition (CEEMD) and extreme learning machine (ELM). The time series is first decomposed into intrinsic mode functions (IMFs) with different frequencies by CEEMD; these IMFs can be divided into three groups, a high-frequency group, a low-frequency group, and a trend group. The ELM forecasting models are established to forecast the three groups separately. The final forecast results are obtained by summing up the forecast values of each group. The proposed hybrid model is applied to the smoothed monthly mean sunspot area archived at NASA's Marshall Space Flight Center (MSFC). We find a mean absolute percentage error (MAPE) and a root mean square error (RMSE) of 1.80% and 9.75, respectively, which indicates that: (1) for the CEEMD-ELM model, the predicted sunspot area is in good agreement with the observed one; (2) the proposed model outperforms previous approaches in terms of prediction accuracy and operational efficiency.

DSM Generation and Accuracy Analysis from UAV Images on River-side Facilities (UAV 영상을 활용한 수변구조물의 DSM 생성 및 정확도 분석)

  • Rhee, Sooahm;Kim, Taejung;Kim, Jaein;Kim, Min Chul;Chang, Hwi Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.183-191
    • /
    • 2015
  • If the damage analysis on river-side facilities such as dam, river bank structures and bridges caused by disasters such as typhoon, flood, etc. becomes available, it can be a great help for disaster recovery and decision-making. In this research, We tried to extract a Digital Surface Model (DSM) and analyze the accuracy from Unmanned Air Vehicle (UAV) images on river-side facilities. We tried to apply stereo image-based matching technique, then extracted match results were united with one mosaic DSM. The accuracy was verified compared with a DSM derived from LIDAR data. Overall accuracy was around 3m of absolute and root mean square error. As an analysis result, we confirmed that exterior orientation parameters exerted an influence to DSM accuracy. For more accurate DSM generation, accurate EO parameters are necessary and effective interpolation and post process technique needs to be developed. And the damage analysis simulation with DSM has to be performed in the future.

Forecasting Hourly Demand of City Gas in Korea (국내 도시가스의 시간대별 수요 예측)

  • Han, Jung-Hee;Lee, Geun-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.87-95
    • /
    • 2016
  • This study examined the characteristics of the hourly demand of city gas in Korea and proposed multiple regression models to obtain precise estimates of the hourly demand of city gas. Forecasting the hourly demand of city gas with accuracy is essential in terms of safety and cost. If underestimated, the pipeline pressure needs to be increased sharply to meet the demand, when safety matters. In the opposite case, unnecessary inventory and operation costs are incurred. Data analysis showed that the hourly demand of city gas has a very high autocorrelation and that the 24-hour demand pattern of a day follows the previous 24-hour demand pattern of the same day. That is, there is a weekly cycle pattern. In addition, some conditions that temperature affects the hourly demand level were found. That is, the absolute value of the correlation coefficient between the hourly demand and temperature is about 0.853 on average, while the absolute value of the correlation coefficient on a specific day improves to 0.861 at worst and 0.965 at best. Based on this analysis, this paper proposes a multiple regression model incorporating the hourly demand ahead of 24 hours and the hourly demand ahead of 168 hours, and another multiple regression model with temperature as an additional independent variable. To show the performance of the proposed models, computational experiments were carried out using real data of the domestic city gas demand from 2009 to 2013. The test results showed that the first regression model exhibits a forecasting accuracy of MAPE (Mean Absolute Percentage Error) around 4.5% over the past five years from 2009 to 2013, while the second regression model exhibits 5.13% of MAPE for the same period.