• Title/Summary/Keyword: absolute mineral composition

Search Result 8, Processing Time 0.025 seconds

Clay Mineral Distribution in the Yellow Sea Surface Sediments: Absolute Mineral Composition and Relative Mineral Composition (황해 표층퇴적물의 점토광물 분포; 절대광물조성과 상대광물조성)

  • Moon, Dong-Hyeok;Yi, Hi-Il;Shin, Dong-Hyeok;Shin, Kyung-Hoon;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.289-295
    • /
    • 2008
  • We studied the difference between the clay mineral content in the bulk marine sediments (absolute clay mineral composition) and clay mineral content only in total clay minerals (relative clay mineral composition) of the Yellow Sea marine sediments, and correlated the relationship between their distribution patterns. We used 56 Yellow Sea Surface sediments collected at the second cruise in 2001 of KORDI, and determined the absolute mineral composition using the quantitative X-ray diffraction analysis. Yellow Sea surface sediments consist of primary rock forming minerals including quartz (average 44.7%), plagioclase (15.9%), alkali feldspar (10.0%), hornblende (2.8%) together with clay minerals (illite 15.3%, chlorite 2.6% and kaolinite 1%) and carbonates (calcite 1.7%, aragonite 0.6%). Absolute clay mineral contents are very high in the region extending from the southeast of Sandong Peninsula to the southwest of Jeju Island. In contrast, it is very low along the margin of the Yellow Sea. Such distribution patterns of absolute clay mineral content are very similar to those of fine-grained sediments in the study area. The average relative clay mineral composition of illite, chlorite, and kaolinite is respectively 80.3%, 14.9% and 4.8%. The distribution pattern of relative mineral composition shows very different phenomenon when compared with those of absolute mineral composition, and also do not exhibit any positive relationship with that of fine-grained sediments in which clay mineral composition is abundant. Therefore, we suggest that the relative clay mineral compositions and their distribution patterns must be used very carefully when interpreting the origin of sediment provenance.

A Comparative Study on Absolute and Relative Clay Mineral Composition of the Surface Sediments around the Jeju Island (제주도 주변해역 표층퇴적물의 점토광물 절대함량 및 상대함량 비교연구)

  • Moon, Dong-Hyeok;Cho, Hyen-Goo;Yi, Hi-Il
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.15-23
    • /
    • 2010
  • The absolute clay mineral compositions and regional distribution of the 131 bulk marine surface sediments around the Jeju Island was compared to their relative compositions and distribution using quantitative X-ray diffraction analysis. Average absolute clay mineral composition is illite 15.3% (0.5~40.5%), chlorite 2.6% (0~7.9%), and kaolinite 1% (0~5.6%). Total contents of the clay minerals are very high in the South Sea of Korea, northwestern part and southern offshore of Jeju Island. The average relative composition is illite 70.9% (16.7~89%), chlorite 21.5% (8.4~68.5%), and kaolinite 7.6% (0~29.3%). Relative illite contents are high in the northwestern and southeastern part of study area, and southern part of Jeju Island. Chlorite contents are high in the eastern part of study area and western part of Jeju Island. Kaolinite contents are high in the western and southern part of Jeju Island, and southern offshore of Jeju Isand. Absolute Distribution patterns are very similar to those of fine-grained (from clay to silt) sediment, whereas relative distribution patterns do not show any relationship with those of fine-grained sediment.

Efficiency of Mineral Nitrogen Fertilization on Yiled and Botanical Composition of Grassland II. Seasonal distribution of dry matter yield and economical mineral nitrogen application on grassland (무기태 질소시비가 초지의 수량과 식생구성에 미치는 영향 I. 초지수량의 계절적 분포와 경제적 무기태 질소시비한계)

  • ;G. Schechtner
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.10 no.3
    • /
    • pp.158-163
    • /
    • 1990
  • This experiment was to study the effect of pure mineral nitrogen fertilizing on seasonal distribution of dry matter yield and the advisable mineral nitrogen amounts on grassland. The results were as follows: 1. With longer regrowth periods the absolute dry matter yields and the nitrogen-efficiences due to nitrogen fertilizing increased substantially, whereas the quality declined at the relatively lesser cutting frequencies. 2. The first cut at 3-cut regimes, the first and fourth cut at 4-cut regimes, and the second and last cut at 5-and 6-cut regimes showed the highest nitrogen-efficiency, respectively. 3. By the sigmaformed process of production curve the most efficient mineral N-dressing rate per ha and cut was calculated: 42-56kg N on the 3-cut areas, 39-55kg N on the 4-cut areas, 38-47kg N on the 5-cut areas and 35-48kg N/ha/cut on the &cut areas. 4. In dependence on site and kind of calculation the economical borders were reached with the following dressings of mineral N/ha/cut: 90-100kg on the 3-cut areas, 70-100kg on the 4-cut areas and 50- 90kg on the 5-and 6-cut areas.

  • PDF

Efficiency of Mineral Nitrogen Fertilization on Yield and Botanical Composition of Grassland VII. Estimation of economical way of mineral nitrogen application depending on difference of annual precipitations in permanent grassland. (무기태 질소시비가 초지의 수량과 식생구성에 미치는 영향 VII. 영년초지에 있어서 년강수량의 차이에 따른 무기태질소의 경제적 시비수준의 추정)

  • ;G. Schechtner
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.11 no.3
    • /
    • pp.189-194
    • /
    • 1991
  • This experiment was carried out to investigate the effect of pure mineral nitrogen fertilization on dry matter yield and to determine the amounts of advisable mineral nitrogen according to difference of annual precipitations in permanent grassland. The results obtained were as follows: 1. Only PK-fertilizing without additional mineral nitrogen application produced 6. 9 tonlha of annual dry matter yields on average in relatively wet years that was higher than in rel. dry and normal years under 3-cut system by 0. 7 and 0.6 ton DMIha, respectively. 2. Due to the lesser rainfall the nitrogen-efficiency was substantially higher with heavy dressing of nitrogen fertilizer. The absolute differences in yield between rel. dry and wet years were 0.4 and 0.7 ton DMIhalyear respectively when dressed with 90 and 120 kgN/ha/cut at 4-, 5- and 6-cut systems, whereas at 3-cut system differences around 1.3 and 1.1 ton Dhllhalyear respectively were recorded. 3. In rel. dry years the most efficient N-dressing rates per ha and year tended to be slightly higher than in rel. wet and normal years. Particularly at 5-cut system 4-7 kg/ha/cut of more nitrogen fertilization was required in order to obtain the highest overyields. 4. The N-dressing rates needed to maintain a nitrogen-efficiency of 8 to 16 kg DM/kg N tended to be stronger particularly at high cut system, and also in rel. dry years higher dressing rates were required that in rel. wet and normal years.

  • PDF

The Study of Age Determination Using Stepwise Dissolution Technique (단계적 용해에 의한 연대측정법 연구)

  • 박계헌
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.133-147
    • /
    • 2001
  • Recently developing method of age determination using stepwise dissolution technique to expand the applicability of absolute age determination significantly is evaluated whether it is applicable to the Korean samples. The materials selected for the study are uranium-bearing black slates from Changni Formation of Ogcheon metamorphic belt, tourmaline separated from Naedeongni granite of Yeongnam massif, garnet and ilmenite separated from ilmenite-bearing anorthositic rock of Yeongnam massif, scheelites from Ogbang mine, and magnetite separated from Gyemyeongsan Formation of Ogcheon metamorphic belt. For the stepwise dissolution, various acid steps with different normalities and different durations were applied to leach the samples. The leachate from each step was analyzed to determine the Pb isotopic composition and concentrations of Pb and U using thermal ionization mass spectrometer. The black slates from the Changni Formation and the tourmaline from the Naedeongni granite reveal significant variation of Pb isotopic composition, which reveals the potential of such stepwise dissolution technique as a dating method. The behaviors of uranium and lead during the each stage of step leaching are different, which seem to reflect the differences in positions within the crystal lattices depending upon mineral species.

  • PDF

Characteristics and Stratigraphic Implications of Granitic Rock Fragments in the Pyroclastic Rocks, SE Jinhae, Korea (진해시 남동부 화성쇄설암 내 화강암편의 특징과 층서적 의미)

  • Cho, Hyeong-Seong;Kim, Jong-Sun;Lee, Jeong-Hwan;Jeong, Jong-Ok;Son, Moon;Kim, In-Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.116-128
    • /
    • 2007
  • Detailed geological mapping, petrographic study, analyses of geochemistry and magnetic susceptibility, and K-Ar dating were carried out in order to determine the origin, age, and stratigraphic implications of granitic rock fragments in the pyroclastic rocks, SE Jinhae city, southern part of the Gyeongsang Basin. As a result, it was found that the area is composed of volcanics and tuffaceous sediments of the Yucheon Group, Bulguksa granites, pyroclastics bearing granitic rock fragments, $basalt{\sim}basaltic$ andesite, and rhyolite in ascending stratigraphic order. The granitic rock fragments in the pyroclastic rocks are divided into granodiorite and biotite granite, which have approximately the same characteristics as the granodiorite and the biotite granite of the Bulguksa granites, respectively, in and around the study area including color, grain size, mineral composition, texture (perthitic and micrographic textures), intensity of magnetic susceptibility (magnetite series), and geochemical features (calc-alkaline series and REE pattern). This leads to the conclusion that the rock fragments originated from the late Cretaceous Bulguksa granites abundantly distributed in and around the study area, but not from the basement rocks of the Yeongnam massif or the Jurassic granites. Based on relative and absolute ages of various rocks in the study area, the pyroclastics bearing granitic rock fragments are interpreted to have erupted between 52 and 16 Ma, i.e. during the Eocene and early Miocene. These results indicate that the various volcanisms, acidic to basic in composition, occurred after the intrusion of the Bulguksa granites, contrary to the general stratigraphy of the Gyeongsang Basin. Very detailed and cautious mapping together with relative and absolute age determinations are, thus, necessary in order to establish reliable stratigraphy of the Yucheon Group in other areas of the Gyeongsang Basin.

Physical Properties of Volcanic Rocks in Jeju-Ulleung Area as Aggregates (제주도 및 울릉도에서 산출되는 화산암의 골재로서의 물성 특징)

  • Byoung-Woon You;Chul-Seoung Baek;Kye-Young Joo
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.205-217
    • /
    • 2024
  • This study evaluated the physical characteristics and quality of volcanic rocks distributed in the Jeju Island-Ulleung Island area as aggregate resources. The main rocks in the Jeju Island area include conglomerate, volcanic rock, and volcanic rock. Conglomerate is composed of yellow-red or gray heterogeneous sedimentary rock, conglomerate, and encapsulated conglomerate in a state between lavas. Volcanic rocks are classified according to their chemical composition into basalt, trachybasalt, basaltic trachytic andesite, trachytic andesite, and trachyte. By stratigraphy, from bottom to top, Seogwipo Formation, trachyte andesite, trachybasalt (I), basalt (I), trachybasalt (II), basalt (II), trachybasalt (III, IV), trachyte, trachybasalt (V, VI), basalt (III), and trachybasalt (VII, VIII). The bedrock of the Ulleung Island is composed of basalt, trachyte, trachytic basalt, and trachytic andesite, and some phonolite and tuffaceous clastic volcanic sedimentary rock. Aggregate quality evaluation factors of these rocks included soundness, resistance to abrasion, absorption rate, absolute dry density and alkali aggregate reactivity. Most volcanic rock quality results in the study area were found to satisfy aggregate quality standards, and differences in physical properties and quality were observed depending on the area. Resistance to abrasion and absolute dry density have similar distribution ranges, but Ulleung Island showed better soundness and Jeju Island showed better absorption rate. Overall, Jeju Island showed better quality as aggregate. In addition, the alkaline aggregate reactivity test results showed that harmless aggregates existed in both area, but Ulleungdo volcanic rock was found to be more advantageous than Jeju Island volcanic rock. Aggregate quality testing is typically performed simply for each gravel, but even similar rocks can vary depending on their geological origin and mineral composition. Therefore, when evaluating and analyzing aggregate resources, it will be possible to use them more efficiently if the petrological-mineralological research is performed together.

Distribution and Stratigraphical Significance of the Haengmae Formation in Pyeongchang and Jeongseon areas, South Korea (평창-정선 일대 "행매층"의 분포와 층서적 의의)

  • Kim, Namsoo;Choi, Sung-Ja;Song, Yungoo;Park, Chaewon;Chwae, Ueechan;Yi, Keewook
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.383-395
    • /
    • 2020
  • The stratigraphical position of the Haengmae Formation can provide clues towards solving the hot issue on the Silurian formation, also known as Hoedongri Formation. Since the 2010s, there have been several reports denying the Haengmae Formation as a lithostratigraphic unit. This study aimed to clarify the lithostratigraphic and chronostratigraphic significance of the Haengmae Formation. The distribution and structural geometry of the Haengmae Formation were studied through geologic mapping, and the correlation of relative geologic age and the absolute age was performed through conodont biostratigraphy and zircon U-Pb dating respectively. The representative rock of the Haengmae Formation is massive and yellow-yellowish brown pebble-bearing carbonate rocks with a granular texture similar to sandstone. Its surface is rough with a considerable amount of pores. By studying the mineral composition, contents, and microstructure of the rocks, they have been classified as pebble-bearing clastic rocks composed of dolomite pebbles and matrix. They chiefly comprise of euhedral or subhedral dolomite, and rounded, well-sorted fine-grained quartz, which are continuously distributed in the study area from Biryong-dong to Pyeongan-ri. Bedding attitude and the thickness of the Haengmae Formation are similar to that of the Hoedongri Formation in the north-eastern area (Biryong-dong to Haengmae-dong). The dip-direction attitudes were maintained 340°/15° from Biryong-dong to Haengmae-dong with a thickness of ca. 200 m. However, around the southwest of the studied area, the attitude is suddenly changed and the stratigraphic sequence is in disorder because of fold and thrust. Consequently, the formation is exposed to a wide low-relief area of 1.5 km × 2.5 km. Zircon U-Pb age dating results ranged from 470 to 449 Ma, which indicates that the Haengmae Formation formed during the Upper Ordovician or later. The pebble-bearing carbonate rock consisted of clastic sediments, suggesting that the Middle Ordovician conodonts from the Haengmae Formation must be reworked. Therefore, the above-stated evidence supports that the geologic age of the Haengmae Formation should be Upper Ordovician or later. This study revealed that the Haengmae Formation is neither shear zone, nor an upper part of the Jeongseon Limestone, and is also not the same age as the Jeongseon Limestone. Furthermore, it was confirmed that the Haengmae Formation should be considered a unit of lithostratigraphy in accordance with the stratigraphic guide of the International Commission on Stratigraphy (ICS).