• Title/Summary/Keyword: absolute distance

Search Result 274, Processing Time 0.027 seconds

Position Estimation of Mobile Robots using Multiple Active Sensors with Network

  • Jin, Tae-Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.280-285
    • /
    • 2011
  • Recently, with the development of service robots and the concept of ubiquitous, the position estimation of mobile objects has received great interest. Some of the localization schemes are introduced, which provide the relative location of the moving objects subjected to accumulated errors. To implement a real time localization system, a new absolute position estimation method for a mobile robot in indoor environment is proposed. Design and implementation of the localization system comes from the usage of active beacon systems (based upon RFID technology). The active beacon system is composed of an RFID receiver and an ultra-sonic transmitter. The RFID receiver gets the synchronization signal from the mobile robot and the ultra-sonic transmitter sends out the traveling signal to be used for measuring the distance. Position of a mobile robot in a three dimensional space can be calculated basically from the distance information from three beacons and the absolute position information of the beacons themselves. In some case, the mobile robot can acquire the ultrasonic signals from only one or two beacons, due to the obstacles located along the moving path. In this paper, a position estimation scheme using fewer than three sensors is developed. Also, the extended Kalman filter algorithm is applied for the improvement of position estimation accuracy of the mobile robot.

Precise Indoor Localization System for a Mobile Robot Using Auto Calibration Algorithm (Auto Calibration Algorithm을 이용한 이동 로봇의 정밀 위치추정 시스템)

  • Kim, Sung-Bu;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.1
    • /
    • pp.40-47
    • /
    • 2007
  • Recently, with the development of service robots and with the new concept of ubiquitous world, the position estimation of mobile objects has been raised to an important problem. As pre-liminary research results, some of the localization schemes are introduced, which provide the absolute location of the moving objects subjected to large errors. To implement a precise and convenient localization system, a new absolute position estimation method for a mobile robot in indoor environment is proposed in this paper. Design and implementation of the localization system comes from the usage of active beacon systems (based upon RFID technology). The active beacon system is composed of an RFID receiver and an ultra-sonic transmitter: 1. The RFID receiver gets the synchronization signal from the mobile robot and 2. The ultra-sonic transmitter sends out the traveling signal to be used for measuring the distance. Position of a mobile robot in a three dimensional space can be calculated basically from the distance information from three beacons and the absolute position information of the beacons themselves. Since it is not easy to install the beacons at a specific position precisely, there exists a large localization error and the installation time takes long. To overcome these problems, and provide a precise and convenient localization system, a new auto calibration algorithm is developed in this paper. Also the extended Kalman filter has been adopted for improving the localization accuracy during the mobile robot navigation. The localization accuracy improvement through the proposed auto calibration algorithm and the extended Kalman filter has been demonstrated by the real experiments.

  • PDF

NEAR-IR TRGB DISTANCE TO DWARF ELLIPTICAL GALAXY NGC 147

  • Kang, A.;Kim, J.W.;Shin, I.G.;Chun, S.H.;Kim, H.I.;Sohn, Y.J.
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.3
    • /
    • pp.203-208
    • /
    • 2007
  • We report the distance modulus of nearby dwarf elliptical galaxy NGC 147 estimated from the Tip of Red-giant Branch (TRGB) method applying to the color-magnitude diagrams and luminosity functions in the near-infrared JHK bands. Apparent magnitudes of TRGBs in each band are obtained by applying Savitzky-Golay filter to the luminosity functions, and the theoretical absolute magnitudes are estimated from Yonsei-Yale isochrones. The derived values of distance modulus to NGC 147 are $(m-M)=23.69{\pm}0.12,\;23.78{\pm}0.17,\;and\;23.85{\pm}0.22\;for\;J,\;H,\;and\;K$ bands, respectively. Distance modulus in bolometric magnitude is also derived as $(m-M)=23.87{\pm}0.11$. We compare the derived values of the TRGB distance modulus to NGC 147 in the near-infrared bands with the previous results in other bands.

DETERMINATIONS OF ITS ABSOLUTE DIMENSIONS AND DISTANCE BY THE ANALYSES OF LIGHT AND RADIAL-VELOCITY CURVES OF THE CONTACT BINARY - II. CK Bootis (접촉쌍성의 광도와 시선속도곡선의 분석에 의한 절대 물리량과 거리의 결정-II. CK Bootis)

  • Lee, Jae-Woo;Lee, Chung-Uk;Kim, Chun-Hwey;Kang, Young-Beom;Koo, Jae-Rim
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.275-282
    • /
    • 2004
  • We completed the light curves of the contact binary CK Boo for 13 nights from June to July in 2004 using the 1-m reflector and BVR filters at Mt. Lemmon Optical Astronomy Observatory, and determined four new times of minimum light (three timings for primary eclipse, one for secondary). With contact mode of the 1998-version Wilson-Devinney binary model, we analyzed our BVR light curves and Rucinski & Lu (1999)'s radial-velocity ones. As a result, we found CK boo to be A-type over-contact binary ($f=84\%$) with the low mass ratio (q=0.11) and orbital inclination ($i=65^{\circ}$). Absolute dimensions of the system are determined from our new solution; $M_1=1.42Me{\odot},\;M_2=0.15M{\odot},\;R_1=1.47R{\odot},\;R_2=0.59M{\odot}$ and the distance to it is derived as about 129pc. Our distance is well consistent with that ($157{\pm}33pc$) from the Hipparcos trigonometric parallax within the limit of the error yielded by the latter.

DETERMINATIONS OF ITS ABSOLUTE DIMENSIONS AND DISTANCE BY THE ANALYSES OF LIGHT AND RADIAL-VELOCITY CURVES OF THE CONTACT BINARY - I. V417 Aquilae (접촉쌍성의 광도와 시선속도곡선의 분석에 의한 절대 물리량과 거리의 결정 -1. V417 Aquilae)

  • 이재우;김천휘;이충욱;오규동
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.2
    • /
    • pp.73-82
    • /
    • 2004
  • New photometric and spectroscopic solutions of W-type overcontact binary V 417 Aql were obtained by solving the UBV light curves of Samec et al. (1997) and radial-velocity ones of Lu & Rucinski (1999) with the 2003 version of the Wilson-Devinney binary code. In the light curve synthesis the light of a third-body, which Qian (2003) proposed, was considered and obtained about 2.7%, 2.2%, and 0.4% for U, B, and V bandpasses, respectively. The model with third-light is better fitted to eclipse parts than that with no third-light. Absolute dimensions of V417 Aql are determined from our solution as $M_1$= 0.53 $M_{*}$, $M_2$= 1.45 $M_{*}$, $R_1$= 0.84 $R_{*}$, and $R_2$= 1.31 $M_{*}$, and the distance to it is deduced as about 216pc. Our distance is well consistent with that (204pc) derived from Rucinski & Duerbeck's (1997) relation, $M_{v}$ = $M_{v}$(log P, B-V), but is more distant than that (131$\pm$40pc) determined by the Hipparcos trigonometric parallax. The difference may result from the relatively large error of Hipparcos parallax for V 417 Aql.l.

Development of 3D absolute displacement monitoring system and its application at the stage of tunnel construction (터널 시공 중 3차원 절대변위 계측시스템의 개발과 적용)

  • Bang, Joon-Ho;Kim, Ki-Young;Jong, Yong-Hun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.3
    • /
    • pp.229-240
    • /
    • 2007
  • The 3D absolute displacement monitoring system has been developed to analyze the tunnel convergence measured under construction of underground structures and to manage effectively the measured data. The system is comprised of the total station, the anchor-typed target pin and the 3D absolute displacement measurement and management program. In this paper, the types and specifications of the 3D total station were presented. The anchor-typed target pin, an improved model of traditional one, was developed and its sightable distance and measurement accuracy were checked by field tests. Also a 3D absolute displacement measurement and management program, TEMS 3D, was developed to provide some analysis tools including the trend and influence lines. L/C ratio, S/C ratio and the like. The developed system was applied the construction stage of a railway tunnel for testing purpose. It is verified that the developed system is capable of predicting weak zones ahead of tunnel face by comparing with results of TSP (Tunnel Seismic Prediction) survey.

  • PDF

Visual depth perception of three dimensinal images and two dimensional images (입체영상과 평면영상의 심도 인지량에 관한 연구)

  • Cho, Am
    • Journal of the Ergonomics Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.11-22
    • /
    • 1991
  • This paper aims to examine experimentally the difference of subjectively measured degree of depth between two dimensional (2D) and three dimensional (3D) images. For this paper, two experiments were conducted; in the first experiment, the subjects were asked to estimate the distance between two objects presented with different depths, while in the second experiment, the subjects' role was to rank three objects in the order of distance from the screen. In both experiments, the objects were presented either in 2D or 3D images. The results of the experiments show that the use of 3D images can induce more accurate and more stable estimates of distance than the use of 2D images. However, it is also noted that the absolute degree of depth is not the unique criteria utilized by the subjects for the distinction of small differences of depth.

  • PDF