• Title/Summary/Keyword: absolute coil signal

Search Result 4, Processing Time 0.019 seconds

Drawing of Impedance Plane Diagrams of Absolute Coil ECT Signals by finite Element Analysis (유한요소해석에 의한 절대코일 와전류 신호의 임피던스 평면도 작성)

  • Shin, Young-Kil;Lee, Yun-Tai;Lee, Jeong-Ho;Song, Myung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.315-324
    • /
    • 2004
  • In eddy current testing(ECT), differential probes have been frequently used since they .an reduce the number of parameters that influence ECT signals. However, differential signal is actually the difference of the two coils' impedance so that signal prediction and interpretation are not easy, On the other hand, absolute coil signal is rather straightforward to predict and analyze. Therefore, combined use of the two types of signals would increase the test reliability. In this paper, absolute coil signals from Inconel plate and tubes are predicted by the finite element analysis and efforts of lift-off, fill-factor, conductivity, operating frequency, test specimen thickness, inner diameter defects, and outer diameter defects are investigated. As a result, various impedance plane diagrams are drawn and analyzed. Significant practical knowldege about absolute signals is accumulated and similar characteristics of the two types of signal could be understood. Finally, slope angle versus defect depth calibration corves are prepared for three different frequencies.

Analysis of the Encoder Composite Signal for a Absolute Position Detection of the Synchronous Motor (동기 전동기의 절대 위치 검출을 위한 엔코더 복합 신호의 분석)

  • Joo, Jae-Hun;Kim, Dong-Hyun;Choi, Jung-Keyng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1018-1024
    • /
    • 2011
  • For the driving of the sinusoidal type permanent magnet synchronous motor with a maximum continuous torque, the 1200 delayed three phase sinusoidal current inputs which matched with the absolute rotor position are needed at the stator coil. Therefore, the detection of a absolute rotor position is required inevitably. And the right angle relationship between stator magnetic field and rotor magnetic field has to be preserved at a stator by this commutation action. The detection of a absolute position for the commutation can be made generally by the output signal analysis of the encoder attached at a motor shaft. The purposes of this study are to design signal processing logic circuits which could detect the absolute position of motor with a modern encoder system and generate the three reference wave for making sinusoidal current input at a stator coil.

Analysis of the Encoder Composite Signal for a Absolute Position Detection of the Permanent Magnet Type Synchronous Motor (영구자석형 동기전동기의 절대 위치 검출을 위한 엔코더 복합 신호의 분석)

  • Kim, Jin-Ae;Joo, Jae-Hun;Jeong, Se-Young;Choi, Jung-Keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.180-184
    • /
    • 2007
  • For driving a sinusoidal type permanent magnet synchronous motor with a maximum continuous torque, a $120^0$ delayed three phase sinusoidal current input which matched with the absolute rotor position is needed at a stator coil. So, the detection of absolute rotor position is required inevitably. Thus the right angle relationship between stator magnetic field and rotor magnetic field has to be preserved at a stator by this commutation action. The detection of a absolute position for the commutation can be made generally by the output signal analysis of the encoder attached at a motor shaft. This study purposes to design signal processing logic circuits which can detect the absolute position of motor with a modem encoder system and generate the three reference wave for making sinusoidal current input at a stator coil.

  • PDF

An Electromagnetic Shock Wave Generator Employing a Solenoid Coil for Extracorporeal Shock Wave Therapy: Construction and Acoustical Properties (체외 충격파 치료술을 위한 솔레노이드 코일을 이용한 전자기식 충격파 발생기: 구성 및 음향학적 특성)

  • Choi Min Joo;Lee Jong Soo;Kang Gwan Suk;Paeng Dong Guk;Lee Yoon Joon;Cho Chu Hyun;Rim Geun Hie
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.271-281
    • /
    • 2005
  • An electromagnetic type shock wave generator suitable for extracorporeal shock wave therapy has been constructed by employing a solenoid coil. The Property of the shock waves produced by the shock wave generator was evaluated using a needle hydrophone. It was shown that, as the capacitor discharging voltage increased from 8 to 18 kV, the Positive Peak Pressure (P+) of the shock wave increased non-linearly from 10 to 77 Wa. In contrast. the negative peak Pressure (f) varied between -3.2 and -6.8 MPa. had its absolute maximum of -6.9 ma at 14 kV The peak amplitudes P+ measured repeatedly under the same voltage setting varied within $5\;\%$ from mean values and this is very small compared to about $50\;\%$ for electrohydraulic type shock wave generators. It could be observed, from the hydrophone signal recorded over 1 ms. several sequential acoustic impulses representing bubble collapses. namely. acoustic cavitation. induced by the shock wave. A technique based on wavelet transformation was used to accurately measure the time delay between the 1st and 2nd collapse known to be closely related to the shock strength. It was observed that the measured time delay increased almost linearly from 120 to $700\;{\mu}s$ with the shock wave Pressure P+ increasing from 10 to 77 MPa.