• 제목/요약/키워드: abrasive wear

검색결과 287건 처리시간 0.019초

Investigating the effect of strength on the LCPC abrasivity of igneous rocks

  • Kahraman, Sair;Fener, Mustafa;Kasling, Heiko;Thuro, Kurosch
    • Geomechanics and Engineering
    • /
    • 제15권2호
    • /
    • pp.805-810
    • /
    • 2018
  • The abrasivity of rocks results in tool wear in rock excavation or drilling projects. It can affect significantly the cost and schedule of the projects performed in abrasive rock massess. For this reason, the understanding of the mechanism of rock abrasivity is very important for excavation projects. This study investigates the effect of strength on the LCPC abrasivity coefficient (LAC) for igneous rocks. The LCPT test, the uniaxial compressive strength (UCS) and the Brazilian tensile strength (BTS) tests were carried out on the igneous rock samples. The abrasive mineral content (AMC) was also determined for each rock type. First, the LAC was correlated to the AMC and a very good correlation was found between the two parameters. Then, the multiple regression analysis was carried out by including the AMC, UCS and BTS to the analysis in order to infer the effect of the strength on the LAC. It was seen that the correlation coefficients of multiple regression models were greater than that of the relation between the LAC and the AMC. It is concluded that the AMC is the dominant parameter determining the abrasivity of rock. On the other hand, the rock strength has also significant effect on rock abrasivity.

불산대체용액을 이용한 유리의 초음파 가공 (Chemical-assisted Ultrasonic Machining of Glass by Using HF Substitute Solution)

  • 전성건;남권선;김병희;김헌영;전병희
    • 소성∙가공
    • /
    • 제13권3호
    • /
    • pp.262-267
    • /
    • 2004
  • Ultrasonic machining has been known as one of the conventional machining methods in the glass fabrication processes. In ultrasonic machining, typically, glass is removed by the impulse energy of the abrasive generated by the ultrasonic power. However, when the machining feature decrease under hundreds of micrometers, as conventional ultrasonic machining uses only the impulse energy of the abrasive, the speed of ultrasonic machining decreases significantly and the surface roughness becomes deteriorated. To overcome this size effect, the chemicals which can erode glasses, such as HF, XF, etc, are added to the slurry. The chemical-assisted ultrasonic machining method, so called, is another alternating effective way for micro machining of glasses. In previous work, we used the hydrofluoric acid (HF) as an additive chemical. But, as the HF solution is too poisonous to be used as a ultrasonic process additive, it is needed to be substituted by other safe chemicals. As results of the machinability comparison of several chemicals, the GST-500F was selected to replace the HF. The GST-500F (pH $4.0{\pm}1.0$) is non-volatile, odorless. During experimental works, it was shown that the machining rate increases 1.5 times faster than the conventional ultrasonic machining. The machining load also decreases. However, the enlargement of the hole diameter and significant tool wear are still the problems to be solved.

Effect of Free Abrasives on Material Removal in Lap Grinding of Sapphire Substrate

  • Seo, Junyoung;Kim, Taekyoung;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • 제34권6호
    • /
    • pp.209-216
    • /
    • 2018
  • Sapphire is a substrate material that is widely used in optical and electronic devices. However, the processing of sapphire into a substrate takes a long time owing to its high hardness and chemical inertness. In order to process the sapphire ingot into a substrate, ingot growth, multiwire sawing, lapping, and polishing are required. The lap grinding process using pellets is known as one of the ways to improve the efficiency of sapphire substrate processing. The lap grinding process ensures high processing efficiency while utilizing two-body abrasion, unlike the lapping process which utilizes three-body abrasion by particles. However, the lap grinding process has a high material removal rate (MRR), while its weakness is in obtaining the required surface roughness for the final polishing process. In this study, we examine the effects of free abrasives in lap grinding on the material removal characteristics of sapphire substrate. Before conducting the lap grinding experiments, it was confirmed that the addition of free abrasives changed the friction force through the pin-on-disk wear test. The MRR and roughness reduction rate are experimentally studied to verify the effects of free abrasive concentration on deionized water. The addition of free abrasives (colloidal silica) in the lap grinding process can improve surface roughness by three-body abrasion along with two-body abrasion by diamond grits.

무가압함침법에 의한 $Al_2O_{3p}$/AC8A 복합재료의 제조 및 특성 (Fabrication and Characteristics of $Al_2O_{3p}$/AC8A Composites by Pressureless Infiltration Process)

  • 김재동;고성위;정해용
    • Composites Research
    • /
    • 제13권6호
    • /
    • pp.1-8
    • /
    • 2000
  • 무가압함침법에 의한 $Al_2O_{3p}$/AC8A 복합재료의 제조와, 제조법과 관련하여 부가적인 Mg의 첨가와 강화상의 부피분율이 $Al_2O_{3p}$/AC8A복합재료의 기계적 성질과 마모저항에 미치는 영향을 조사하였다. 강화상 입자와 기지재료의 일부를 분말로 조합한 혼합분말 속으로 기지금속을 자발적으로 침투시켜 부피분율이 20~40%인 $Al_2O_{3p}$/AC8A 복합재료를 제조할 수 있었다. 그러나 강화상의 부피분율이 40%인 복합재료의 경우 기공율의 상승으로 복합재료의 강도는 저하하였다. Mg의 첨가량이 5~7wt% 일 때 가장 높은 강도를 나타냈으며, 경도는 Mg 첨가량의 증가에 따라 점진적으로 상승하였다. $Al_2O_{3p}$/AC8A복합재료는 저속에서 기지재료에 비해 내마모성이 저하하였으나, 고속에서는 AC8A합금에 비해 약 5.5배의 우수한 내마모성을 나타냈다. 마모기구의 관찰에 의해 부피분율 20% $Al_2O_{3p}$/AC8A복합재료의 경우 연삭마모가 주된 마모기구임을 알 수 있었으며, 부피분율 40% $Al_2O_{3p}$/AC8A복합재료는 높은 기공율로 인한 마모 가중으로 저속에서도 경미한 응착마모가 관찰됐고 마찰 속도가 증가함에 따라 격심한 마모로 진행되었다.

  • PDF

고무 소재의 슬러리 마모 거동에 관한 연구 (The Study on the Slurry Wear Behavior of Rubber Vulcanizates)

  • 정경호;홍영근;박문수
    • Elastomers and Composites
    • /
    • 제46권1호
    • /
    • pp.70-77
    • /
    • 2011
  • 슬러리와 접하는 환경에서 사용되는 고무 소재의 슬러리 마모 거동을 평가하기 위해 새로운 형태의 슬러리 마모시험기(Slurry Wear Tester; SWT)가 본 연구에서 제안되었다. 슬러리 마모 거동을 평가하기 위한 기본 매트릭스로 천연고무(NR)와 클로로프렌고무(CR)가 선정되었다. SWT 장치의 챔버를 채우기 위한 유체로는 35% HCl 용액과 NaCl 용액이 사용되었다. SWT의 결과는 기존의 고무 마모시험 방법들중의 하나인 건식 상태에서 시험이 진행되는 Akron 마모시험의 결과와 비교를 하였다. Akron 마모 시험의 결과에 따르면 CR이 NR 보다 더 빠른 속도로 마모가 됨을 알 수 있었으며 재료의 히스테레시스 특성이 마모에 영향을 미침을 알 수 있었다. 그러나 SWT 결과에 따르면 CR과 NR의 슬러리 마모거동은 큰 차이가 없었으며 더구나 산의 농도와 HCl 용액과 NaCl 용액에 침지된 시간에 따라서도 슬러리 마모속도에는 큰 영향이 없었다. 이는 슬러리에 포함된 유체가 마모지와 시편 사이의 마찰을 감소시켰기 때문이라고 사료되었다. 또한 Akron 마모 시험의 경우 고무 소재의 히스테레시스가 마모에 영향을 미쳤지만, SWT의 경우 유체는 반복 변형에 의해 발생되는 열을 감소시키고 마모지 표면에 남아있는 마모 찌꺼기들을 제거하였기 때문에 Akron 마모 시험의 결과와는 다른 결과를 나타내었다. 따라서 슬러리에 의한 고무 소재의 마모를 평가하는데 있어서 기존의 방식인 건식방법으로 마모 거동을 평가할 경우 잘못된 결과를 초래할 수 있음을 알 수 있었다.

석고 다이에 대한 다이 강화제의 영향 (THE INFLUENCE OF THE DIE HARDENER ON GYPSUM DIE)

  • 김영림;박주미;송광엽
    • 대한치과보철학회지
    • /
    • 제45권4호
    • /
    • pp.546-554
    • /
    • 2007
  • Statement of problem: Die materials require abrasion resistance, dimensional stability with time, and high surface wettability for adequate material properties. Wear of gypsum materials is a significant problem in the fabrication of accurately fitting cast prosthetic devices. So It has been recommended that the use of die hardener before carving or burnishing of the wax pattern. Purpose: The purpose of this study was to compare the abrasion resistance and surface microhardness(Knoop) with 3 commonly used gypsum die materials(MG Crystal Rock, Super plumstone, GC $FUJIROCK^{(R)}$ EP) with and without the application of 2 die hardeners. Material and methods: Three die materials were evaluated for abrasion resistance and surface microhardness after application of 2 die hardeners(Die hardener and Stone die & plaster hardener). Thirty specimens of each gypsum material were fabricated using an impression of resin die(Pattern resin; GC Corporation, Japan) with 1-mm high ridges, sloped 90 degrees. Gypsum materials were mixed according to manufacturer's recommendations and allowed to set 24 hours before coating. Specimens were arbitrary assigned to 1 of 3 treatment subgroups (n=10/subgroup): no treatment(control), coated with Die hardener, and coated with Stone die & plaster hardener. Abrasion resistance(measured by weight loss) was evaluated using device in 50g mass perpendicular to the ridges. Knoop hardness was determined by loading each specimen face 5 times for 15 seconds with a force of 50g. A scanning electron microscope was used to evaluate the surface of specimens in each treatment subgroup. Conclusions: The obtained results were as follows: 1. 3 types of die stone evaluated in this study did not show significant differences in surface hardness and abrasive resistance(P<.05). 2. In the abrasive resistance test, there were no significant differences between GC $FUJIROCK^{(R)}$ EP and MG Crystal Rock with or without 2 die hardener(P<.05). 3. Super plumstone treated with Stone die & plaster hardener showed increased wear loss(P<.05) 4. Die hardener coatings used in this study decreased the surface hardness of the gypsum material(P<.05).

DLC 코팅한 Fe-3.0%Ni-0.7%Cr-1.4%Mn-X강의 표면특성평가 (Characterization of DLC Coated Surface of Fe-3.0%Ni-0.7%Cr-1.4%Mn-X Steel)

  • 장재철;김송희
    • 한국표면공학회지
    • /
    • 제47권1호
    • /
    • pp.13-19
    • /
    • 2014
  • The various surface treated conditions of Fe-3.0%Ni-0.7%Cr-1.4%Mn-X steel such as as-received, ion nitriding, DLC coated, DLC coated after nitriding for 3 hrs and 6 hrs were investigated to evaluate the beneficial effect for plastic mold steel. Micro Vickers hardness tester was used to estimate nitriding depth from the hardness profile and to measure hardness on the surface. Elastic modulus and residual stress were measured by a nanoindentator. Scratch test and SP (small ball punch test) were utilized to assess the adhesive strength of DLC coating. The depth of nitriding layer was measured as $50{\mu}m$ for the condition of 3 hrs nitriding and $90{\mu}m$ for that of 6 hrs nitriding. Hardness, elastic modulus, residual stress of DLC coating were 20.37 GPa, 162.78 GPa and -1456 MPa respectively. Residual stress on the surface of DLC coating after nitriding could increase to -3914 MPa by introducing nitriding before DLC coating. During the 'Ball-On-Disc' test ${\gamma}^{\prime}$ particles pulled out from the surface of nitrized layer tend to enhance abrasive wear mode since the fraction of ${\gamma}^{\prime}$ (Fe4N) in ion-nitrized layer is known to increases with nitriding time. Thus the specific wear rate of the nitriding layer increased. Comparing with nitriding the specific wear rate in work piece disc as well as ball decreased prominently in DLC coating due to the remarkable reduction in friction coefficient.

자장여과아크소스의 자장필터 꺾임 각도와 아크방전전류에 따라 증착된 ta-C 코팅의 마모 거동 연구 (A Study on the Wear Behavior of Tetrahedral Amorphous Carbon Coatings Based on Bending Angles of the Filtered Cathodic Vacuum Arc with Different Arc Discharge Currents)

  • 김원석;김송길;장영준;김종국
    • Tribology and Lubricants
    • /
    • 제38권3호
    • /
    • pp.101-108
    • /
    • 2022
  • The structure and properties of tetrahedral amorphous carbon (ta-C) coatings depend on the main process parameters and bending angles of the magnetic field filter used in the filtered cathodic vacuum arc (FCVA). During the process, it is possible to effectively control the plasma flux of carbon ions incident on the substrate by controlling the arc discharge current, thereby influencing the mechanical properties of the coating film. Furthermore, we can control the size and amount of large particles mixed during carbon film formation while conforming with the bending angle of the mechanical filter mounted on the FCVA; therefore, it also influences the mechanical properties. In this study, we consider tribological characteristics for filtered bending angles of 45° and 90° as a function of arc discharge currents of 60 and 100 A, respectively. Experiment results indicate that the frictional behavior of the ta-C coating film is independent of the bending angle of the filter. However, its sliding wear behavior significantly changes according to the bending angle of the FCVA filter, unlike the effect of the discharge current. Further, upon changing the bending angle from 45° to 90°, abrasive wear gets accelerated, thereby changing the size and mixing amount of macro particles inside the coating film.

SUJ2 베어링 강의 트라이볼로지 특성에 대한 초음파나노표면개질 (UNSM) 및 원더프로세스크래프트 (WPC) 처리 효과 연구 (A Study on the Effects of Ultrasonic Nanocrystal Surface Modification (UNSM) and Wonder Process Craft (WPC) Treatments on Tribological Properties of SUJ2 Bearing Steel)

  • 아마노프 아웨즈한;카림바예프 루슬란;조인호;김응주
    • Tribology and Lubricants
    • /
    • 제38권4호
    • /
    • pp.170-178
    • /
    • 2022
  • Mechanical surface treatment is an excellent approach widely used to modulate and improve the performance and service life of bearings, gears, and frictional joints. The main purpose of this study is to investigate and compare the effect of ultrasonic nanocrystal surface modification (UNSM) and wonder process craft (WPC) on the surface and tribological properties of SUJ2 bearing steel. The surface roughness and hardness of the untreated and treated (UNSM- and WPC-treated) specimens were measured and compared. Their tribological properties were evaluated using a micro-tribometer under grease-lubricated and dry conditions against itself. Surface hardness measurement results revealed that both the UNSM- and WPC-treated specimens had a higher hardness than that of the untreated specimen. The surface roughness of the untreated specimen was reduced after UNSM and WPC treatments. Abrasive wear mode was observed on the surface of the specimens worn under grease-lubricated conditions, while adhesive wear mode was found on the surface of the specimens worn in dry conditions. According to the tribological test results, the friction coefficient and wear rate of the untreated specimens were reduced by the application of both the UNSM and WPC treatments under grease-lubricated and dry conditions.

SiO2 나노 콜로이드 량이 다른 Si3N4의 열처리에 따른 마모 특성 (Wear Characteristics According of Heat Treatment of Si3N4 with Different Amounts of SiO2 Nano-Colloid)

  • 안석환;남기우
    • 대한기계학회논문집A
    • /
    • 제38권10호
    • /
    • pp.1117-1123
    • /
    • 2014
  • 본 연구는 균열 치유 물질로 알려진 $SiO_2$ 나노 콜로이드의 첨가량을 달리한 $Si_3N_4$를 소결하여, 경면 연마한 시험편 표면에 $SiO_2$ 나노 콜로이드를 코팅하여 1273 K, 공기중에서 1시간 균열치유 처리하였다. 그 후, 마모시험편은 1073, 1273 및 1573 K에서 10분간 열처리하여 시험을 실시하였다. $SiO_2$ 나노 콜로이드를 코팅하여 열처리한 표면은 무코팅 표면보다 약간 거칠게 나타났으며, 열처리 온도에 따라 표면의 산화 정도는 조도와 뚜렷한 상관관계는 가지지 않았다. 그리고 마찰계수, 마모손실 및 굽힘강도는 표면 거칠기와 관계가 없었다. SKD11 상대재에 대하여 연삭마모의 거동을 보였으며, 마찰계수와 마모손실은 비례하였다. 또한, 강도가 클수록 마찰계수가 작고, 마모손실도 작았다. $SiO_2$ 나노 콜로이드 량의 증가에 따라서 마찰계수는 증가하다가 일정하게 되었지만, 마모손실은 증가하였다. 또한 열처리 온도가 증가함에 따라서 마찰계수는 약간 증가하는 경향을 나타내었다.