• 제목/요약/키워드: aboveground and soil carbon

검색결과 40건 처리시간 0.025초

Carbon storage, Litterfall and Soil $CO_2$ Efflux of a Larch(Larix leptolepis) Stand

  • Kim, Choon-Sig
    • Animal cells and systems
    • /
    • 제10권4호
    • /
    • pp.191-196
    • /
    • 2006
  • This study was carried out to evaluate soil carbon cycling of a 36-year-old larch (Larix leptolepis) stand in Korea. The aboveground and soil organic carbon storage, litterfall, and soil respiration rates were measured over twoyear periods. The estimated aboveground biomass carbon storage and increment were 4220 gC $m^{-2}$ and 150 gC $m^{-2}\;yr^{-1}$, respectively. Mean organic carbon inputs by needle and total litterfall were 118 gC $m^{-2}\;yr^{-1}$ and 168 gC $m^{-2}\;yr^{-1}$, respectively. The aboveground carbon increment of the stand was similar to the annual input of carbon from total litterfall. The soil respiration rates correlated exponentially with the soil temperature at a depth of 20 cm ($R^2$ = 0.86). In addition, the exponential regression equation indicated a relatively strong positive relationship between the soil respiration rates and soil temperature, while there was no significant relationship between the soil respiration rates and the soil moisture content. The annual mean and total soil respiration rates were 0.40 g $CO_2\;m^{-2} h^{-1}$ and 3010 g $CO_2\;m^{-2}\;yr^{-1}$ over the two-year study period, respectively.

충주지역의 자작나무와 가래나무 조림지의 지상부 탄소고정에 관한 연구 (Carbon Storage in Aboveground of Betula platyphylla and Juglans mandshurica Plantations, Chungju, Korea)

  • 이상진;박관수
    • 한국환경복원기술학회지
    • /
    • 제10권6호
    • /
    • pp.62-69
    • /
    • 2007
  • This study has been carried out to estimate aboveground carbon contents in an average 30-years-old Betula platyphylla and 32-years-old Juglans mandshurica stands in Chungju, Chungbuk Province. Nine sample trees were cut in each forest and soil samples were collected. Carbon concentration in stemwood, stembark, branch, and foliage were ranged from 54.6% to 57.0% in Betula platyphylla and 53.5% to 56.9% in Juglans mandshurica stands. Aboveground carbon contents was estimated by the equation model logWt=A+BlogD where Wt is oven-dry weight in kg and D is DBH in cm. Total aboveground carbon contents was 34.31t/ha in Betula platyphylla stand and 21.10t/ha in Juglans mandshurica stand. Aboveground net primary carbon production was estimated at 2.31t/ha/yr in Betula platyphylla stand and 2.03t/ha/yr in Juglans mandshurica stand.

Carbon Storage in Aboveground, Root, and Soil of Pinus densiflora Stand in Six Different Sites, Korea

  • Park, Gwan-Soo;Choi, Jaeyong;Lee, Kyung-Hak;Son, Young-Mo;Kim, Rae-Hyun;Lee, Hang-Goo;Lee, Sang-Jin
    • 한국환경복원기술학회지
    • /
    • 제12권2호
    • /
    • pp.1-9
    • /
    • 2009
  • Due to the increase of carbon dioxide in the atmosphere and global warming, the importance of forest ecosystems, as a place of carbon accumulation and emission, has received a great amount of recognition lately. This study was performed to help understand and provide the current status of carbon cycle in the pinus densiflora stand, Korea. The samples were collected from average 35-years-old Pinus densifiora rands in Gongju, Youngdong, Chungsan, Muju, Mupung, and Jangsu regions. Total thirty aboveground sample trees were cut, and ten roots were sampled, and soil samples were collected. Average carbon concentrations in foliage, branch, stem bark, stem wood, and root were 55.7%, 56.0%, 56.0%, 57.3%, and 56.5%, respectively. Carbon content was estimated by the model $Wt=aD^b$ where Wt is oven-dry weight in kg and D is DBH in cm. Total carbon content (aboveground and root) was 42.39tonC/ha in the Pinus densiflora stand. The proportion of each tree component to total carbon content was high in order of stemwood, root, branch, stem bark, and foliage. Total net primary production (aboveground and root) was estimated at 6.51tonC/ha/yr in Pinus densiflora stand. The proportion of each tree component to total net primary carbon content was high in order of sternwood, root, branch, foliage and stembark. Soil carbon contents in the study sites was 43.51tonC/ha at 0-50cm soil depth.

Soil Carbon Cycling and Soil CO2 Efflux in a Red Pine (Pinus densiflora) Stand

  • Kim, Choon-Sig
    • Journal of Ecology and Environment
    • /
    • 제29권1호
    • /
    • pp.23-27
    • /
    • 2006
  • This study was conducted to evaluate forest carbon cycling and soil $CO_2$ efflux rates in a 42-year-old pine (Pinus densiflora) stand located in Hamyang-gun, Korea. Aboveground and soil organic carbon storage, litterfall, litter decomposition, and soil $CO_2$ efflux rates were measured for one year. Estimated aboveground biomass carbon storage and increment in this stand were $3,250gC/m^2\;and\;156gC\;m^{-2}yr^{-1}$, respectively. Soil organic carbon storage at the depth of 30 cm was $10,260gC/m^2$ Mean organic carbon inputs by needle and total litterfall were $176gC\;m^{-2}yr^{-1}\;and\;235gC\;m^{-2}yr^{-1}$, respectively. Litter decomposition rates were faster in nne roots less than 2 mm diameter size ($<220\;g\;kg^{-1}yr^{-1}$) than in needle litter ($<120\;g\;kg^{-1}yr^{-1}$). Annual mean and total soil respiration rates were $0.37g\;CO_2m^{-2}h^{-1}$ and $2,732g\;CO_2m^{-2}yr^{-1}$ during the study period. A strong positive relationship existed between soil $CO_2$ efflux and soil temperature (r=0.8149), while soil $CO_2$ efflux responded negatively to soil pH (r=-0.3582).

충주지역(忠州地域)의 신갈나무와 굴참나무 천연림(天然林) 생태계(生態系)의 지상부(地上部) 및 토양(土壤) 중(中) 탄소고정(炭素固定)에 관(關)한 연구(硏究) (Aboveground and Soil Carbon Storages in Quercus mongolica and Quercus variabilis Natural Forest Ecosystems in Chungju)

  • 박관수
    • 한국산림과학회지
    • /
    • 제88권1호
    • /
    • pp.93-100
    • /
    • 1999
  • 충청북도 충주지역에서 생육하는 평균수령 39년생 신갈나무림과 평균수령 40년생 굴참나무 천연림 생태계의 지상부와 토양중 탄소고정량을 조사하기 위하여 임분별 10주씩 총 20주의 표본목을 선정 벌목하고 토양시료를 채취하였다. 신갈나무림과 굴참나무림의 지상부 탄소고정량을 추정하기 위하여 방정식 모형 $Wt=aD^b$를 사용하여 추정한 지상부 총 탄소고정량은 신갈나무림에서 48.85tonC/ha와 굴참나무림에서 57.49tonC/ha으로 신갈나무림보다 굴참나무림에서 높은 탄소고정량을 보였다. 부위별 탄소함량 구성비는 신갈나무림과 굴참나무림 모두에서 수간목부, 생지부, 수피, 그리고 잎의 순으로 높았다. 연간 고정할 수 있는 탄소량은 신갈나무림이 5.88tonC/ha. 굴참나무림이 5.12tonC/ha으로 굴참나무림보다 신갈나무림에서 높게 나타났다. 토양내 탄소함량은 신갈나무림과 굴참나무림이 0-50cm의 깊이에서 비슷한 값인 67.0tonClha와 67.8tonC/ha이었으며 소나무군락 54.7tonC/ha보다 높게 나타났으나 통계적 유의성은 없는 것으로 나타났다.

  • PDF

Litterfall과 토양호흡 측정에 의한 신갈나무 천연림의 지하부 탄소 분배 (Belowground Carbon Allocation of Natural Quercus mongolica Forests Estimated from Litterfall and Soil Respiration Measurements)

  • 이명종;손요환;진현오;박인협;김동엽;김용석;신동민
    • 한국농림기상학회지
    • /
    • 제7권3호
    • /
    • pp.227-234
    • /
    • 2005
  • From published data of mature forests worldwide, Raich and Nadelhoffer suggested that total belowground carbon allocation (TBCA) could be estimated from the difference between annual rates of soil respiration and aboveground litterfall. Here we analyze new measurements of IRGA-based soil respiration and litterfall of natural mature oak forests dominated by Quercus mongolica in Korea. Rates of in situ soil respiration and aboveground litter production are highly and positively correlated. Our results disagree with the Raich and Nadelhoffer model far world forests. A regression analysis of the data from Q. mongolica forests produced the following relationship: annual soil respiration : 141 + 2.08 ${\times}$ annual litterfall. The least squares regression line has a more gentle slope (2.08) than the slope (2.92) described by Raich and Nedelhoffer for mature forests worldwide. The regression slope of our study indicates that, on average, soil respiration is about two times the aboveground litterfall-C, which further implies that TBCA is similar with annual aboveground litterfall-C at natural Q. mongolica forests in Korea. The non-zero Y-intercept (141) of the regression indicates that TBCA may be greater than litterfall-C where litterfall rate are relativery low. Over a gradient of litterfall-C ranging from 200-370 g C $m^{-2}yr^{-l}$, TBCA increased from 350-530 g C $m^{-2}yr^{-l}$.

Carbon Storage in an Age-Sequence of Temperate Quercus mongolica Stands in Central Korea

  • Kim, Sung-geun;Kwon, Boram;Son, Yowhan;Yi, Myong Jong
    • Journal of Forest and Environmental Science
    • /
    • 제34권6호
    • /
    • pp.472-480
    • /
    • 2018
  • This study was conducted to estimate carbon storage in Quercus mongolica stands based on stand age class, and to provide basic data on the carbon balance of broad-leaved forests of Korea. The research was conducted at the experimental forest of Kangwon National University, Hongcheon-gun County, Gangwon-do Province, Korea. Three plots were set up in each of three Q. mongolica forest stands (III, V, and VII) to estimate the amount of carbon stored in Q. mongolica aboveground vegetation, coarse woody debris (CWD), organic layer, mineral soil, and litterfall. The carbon storage of the aboveground vegetation increased with an increase in stand age, while the carbon storage ratio of stems decreased. The carbon storage of the organic layer, CWD, and litterfall did not show any significant differences among age classes. In addition, the carbon concentration and storage in the forest soils decreased with depth, and there were no differences among age classes for any soil horizon. Finally, the total carbon storage in the III, V, and VII stands of Q. mongolica were 132.2, 241.1, and $374.4Mg\;C\;ha^{-1}$, respectively. In order to predict and effectively manage forest carbon dynamics in Korea, further study on deciduous forests with other tree species in different regions will be needed.

Carbon Sequestration of Teak (Tectona grandis Linn. f.) Plantations in the Bago Yoma Region of Myanmar

  • Oo, Thaung Naing;Lee, Don Koo;Combalicer, Marilyn
    • 한국산림과학회지
    • /
    • 제96권5호
    • /
    • pp.602-608
    • /
    • 2007
  • Forest plantations become important strategy not merely for the financial aspect, but for carbon sequestration and ecosystem stability. Forest plantations increase the density of the forest biomass, which reduce the increase in atmospheric carbon dioxide. Biomass density is also a useful variable for comparing structural and functional attributes of forest ecosystems across a wide range of environmental conditions. In this study, carbon sequestration of teak (Tectona grandis Linn. f.) in the individual tree and plantation levels estimation was carried out Site-specific allometric equation for the estimation of teak tree biomass was developed based on the direct measurement of fifteen (15) harvested trees in the Oak-twin Township of the Bago Yoma Region, Myanmar. A regression equation of the diameter at breast height (DBH) and the aboveground biomass (carbon content) was constructed to estimate the carbon storage level of plantations, which averaged 79 ton/ha. The average carbon accumulation in the soil (up to 30 cm in depth) was estimated 38.89 ton/ha, The highest mean annual increment (MAI) of total carbon was found in the 6-yr-old teak plantation (12.10 ton/ha/yr) whereas the lowest MAI was in the 26-yr-old teak plantation (4.31 ton/ha/yr).

Budget and distribution of organic carbon in Quercus serrata Thunb. ex Murray forest in Mt. Worak

  • Lee, Seung-Hyuk;Jang, Rae-Ha;Cho, Kyu-Tae;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • 제38권4호
    • /
    • pp.425-436
    • /
    • 2015
  • The carbon cycle came into the spotlight due to the climate change and forests are well-known for their capacity to store carbon amongst other terrestrial ecosystems. The annual organic carbon of litter production, forest floor litter layer, soil, aboveground and belowground part of plant, standing biomass, net primary production, uptake of organic carbon, soil respiration, etc. were measured in Mt. Worak in order to understand the production and carbon budget of Quercus serrata forest that are widely spread in the central and southern part of the Korean Peninsula. The total amount of organic carbon of Q. serrata forest during the study period (2010-2013) was 130.745 ton C ha-1. The aboveground part of plant, belowground part of plant, forest floor litter layer, and organic carbon in soil was 50.041, 12.510, 4.075, and 64.119 ton C ha-1, respectively. The total average of carbon fixation in plants from photosynthesis was 4.935 ton C ha-1 yr-1 and organic carbon released from soil respiration to microbial respiration was 3.972 ton C ha-1 yr-1. As a result, the net ecosystem production of Q. serrata forest estimated from carbon fixation and soil respiration was 0.963 ton C ha-1 yr-1. Therefore, it seems that Q. serrata forest can act as a sink that absorbs carbon from the atmosphere. The carbon uptake of Q. serrata forest was highest in stem of the plant and the research site had young forest which had many trees with small diameter at breast height (DBH). Consequentially, it seems that active matter production and vigorous carbon dioxide assimilation occurred in Q. serrata forest and these results have proven to be effective for Q. serrata forest to play a role as carbon storage and NEP.

경기도(京畿道) 광릉(光陵) 리기다소나무임분(林分)의 지상부(地上部) 탄소저장량(炭素貯藏量) 변화(變化) (Change of Aboveground Carbon Storage in a Pinus rigida Stand in Gwangnung, Gyunggi-do, Korea)

  • 김춘식;정진현
    • 한국산림과학회지
    • /
    • 제90권6호
    • /
    • pp.774-780
    • /
    • 2001
  • 경기도 광릉 중부임업시험장내 임목밀도와 지위가 다른 31년생 리기다소나무임분올 대상으로 3개의 $20{\times}10m$ 조사구를 선정하고 5년 동안(1997~2001) 각 부위별 탄소량 및 탄소 년 증가량을 조사하였다. 각 부위별 탄소함량은 잎>가지>수피>줄기>임상>토양 0~15cm>토양 15~30cm순 이었으며 탄소저장량 및 년 증가량은 임목밀도와 지위에 따라 차이가 있는 것으로 나타났다. 유사한 임목밀도의 경우 지위가 높은 지역이 탄소저장량과 증가량이 높았으며 유사한 지위의 경우 임목밀도에 의해 탄소저장량 및 년 증가량이 차이를 보이고 있다. 조사된 임분의 임목뿌리를 제외한 리기다소나무임분의 총탄소 저장량은 140,600kgC/ha으로 임목 61%, 토양 31%, 임상 8%로 나타났다. 고사목이 많이 발생하였던 2001년도를 제외한 년 평균 탄소 증가량은 3,233kgC/ha/yr로 줄기>가지>수피>잎 순이었다. 31년생 리기다소나무임분의 탄소저장량 및 년 증가량 변화를 조사한 결과 유사한 지위에서는 임목밀도가 높은 것이 지위에 차이가 날때는 임목밀도 조절에 의한 생장량 증가가 탄소흡수능력을 증진 할 수 있을 가능성을 시사한다.

  • PDF