• Title/Summary/Keyword: ablative behavior

Search Result 4, Processing Time 0.019 seconds

Atomic Force Microscopy and Specular Reflectance Infrared Spectroscopic Studies of the Surface Structure of Polypropylene Treated with Argon and Oxygen Plasmas

  • Seo Eun-Deock
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.608-614
    • /
    • 2004
  • Isotactic polypropylene (PP) surfaces were modified with argon and oxygen plasmas using a radio­frequency (RF) glow discharge at 240 mTorr and 40 W. The changes in topography and surface structure were investigated by atomic force microscopy (AFM) in conjunction with specular reflectance of infrared (IR) microspectroscopy. Under our operating conditions, the AFM image analysis revealed that longer plasma treatment resulted in significant ablation on the PP surface, regardless of the kind of plasma employed, but the topography was dependent on the nature of the gases. Specular reflectance IR spectroscopic analysis indicated that the constant removal of surface material was an important ablative aspect when using either plasma, but the nature of the ablative behavior and the resultant aging effects were clearly dependent on the choice of plasma. The use of argon plasma resulted in a negligible aging effect; in contrast, the use of oxygen plasma caused a noticeable aging effect, which was due to reactions of trapped or isolated radicals with oxygen in air, and was partly responsible for the increased surface area caused by ablation. The use of oxygen plasma is believed to be an advantageous approach to modifying polymeric materials with functionalized surfaces, e.g., for surface grafting of unsaturated monomers and incorporating oxygen-containing groups onto PP.

Numerical Analysis of 1-D Ablation and Charring of a Composite Heat Insulator Using Finite Analytic Method (유한해석법을 이용한 조합 내열부품의 1차원 삭마 및 숯층 형성 해석)

  • 함희철;배주찬;이태호;전광민;이진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.943-951
    • /
    • 1992
  • The objectives of this study are to analyse the thermal response behavior occurring in the charring ablative material more realistically by considering ablation and char phenomena occurring in several material layers, and to increase the reliability of thermal analysis by being able to get stable solutions through using the finite analytic method. A program has been developed to predict the temperature distribution, ablation thickness, char thickness, ablation velocity and char velocity by solving non-linear one-dimensional heat conduction equation. Results of calculation were compared with results of published papers. From this compariosn this program was proved to be a very good tool for thermal design and analysis of charring ablative materials used in the rocket propulsion system.

Ablative Mechanism of SiC Coated Carbon/carbon Composites with Ratio of Oxygen to Fuel at Combusion Test (연소시험에서 산소와 연료 비에 따른 탄화규소로 코팅된 탄소/ 탄소 복합재의 삭마 메커니즘)

  • Zhang, Eun-Hee;Kim, Zeong-Baek;Joo, Hyeok-Jong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.3
    • /
    • pp.227-233
    • /
    • 2007
  • Carbon/carbon (C/C) composites as unique materials possess exceptional thermal resistance with light weight, high stiffness, and strength even at high temperature. However, one serious obstacle for application of the C/C composites is their poor oxidation resistance in high temperature oxidizing environments. SiC coating has been employed to protect the composites from oxidation. This study explored combustion characteristics of 4-directional (4D) carbon/carbon composites using liquid fuel rocket engine to investigate ablative motion of the materials. C/C composites were made of coal tar pitch as a matrix precursor, and heat-treated at $2300^{\circ}C$. Throughout repeated densification process, the density of the material reached $1.903g/cm^3$. After machining 4D C/C composites, the nozzle surface was coated by a SiC layer by pack-cementation method to improve oxidation resistance. Erosion characteristics of SiC-coated C/C composites were measured as function of the ratio of oxygen to fuel. The morphological change of the composites after combustion test was investigated using SEM and erosion mechanism also was discussed.

Discussion on the Sealing Gap Behavior of Rocket Motor Connection with the Structural Design Parameters (추진기관 기밀체결부의 형상설계변수에 따른 기밀조립 갭의 영향평가)

  • Kim, Seong-eun;Ro, Young-hee;Hwang, Tae-kyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.517-520
    • /
    • 2017
  • In this paper, we represented the structural design parameter effect on the sealing gap behavior of solid rocket motor case and nozzle connection under penetrated pressure through the sealing path between insulation rubber and the ablative FRP bonded on the inside convergent wall of nozzle. It is important to keep the good sealing capacity during all the combustion time of SRM. To achieve the crucial role of sealing system of SRM, designers must consider design factors for stable sealing clearance gap as the nearly unchanged initial design state as possible for sufficient compression rate of O-ring under sealing gap pressure.

  • PDF