• Title/Summary/Keyword: a-depth

Search Result 22,347, Processing Time 0.051 seconds

Studies on the Effect of Temperature During the Reduction Division and the Grain Filling Stage in Rice Plants II. Effect of Air Temperature at the Grain Filling Stage in Indica-Japonica Crosses (수도의 감수분열기 및 등숙기에 있어서 온도반응에 관한 연구 제2보 수도 Indica$\times$Japonica 품종의 등숙기에 있어서의 온도반응)

  • kyu-Chin Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.28 no.1
    • /
    • pp.58-75
    • /
    • 1983
  • The effects of air temperature on the grain filling stage of indica-japonica crosses were studied in artificial temperature-controlled cabinets, using Indica-Japonica crosses (Suweon 264, Suweon 258 and Milyang 29), Indica IR 36 and Lengkwang) and a Japonica rice (Jinheung). The optimum temperature to achieve maximum grain weight during the grain-filling stage was $26/18^{\circ}C$ for all varieties. Within the temperature range of 13 to $28^{\circ}C$, the grain filling period was shorter as the temperature was increased. At the highest temperature $(32/24^{\circ}C)$ the upper-position grains ("special spikelets") of IR 36 required 13days after flowering to reach the maximum weight, in Jinheung 23 days, in indica-japonica varieties (Suweon 264, Suweon 258, and MiIyang 29) 18 days, and in Lengkwang, 23 days. In the case of Lengkwang, at $32/24, \;29/21^{\circ}C$ and $26/18^{\circ}C$temperature range the upper-position grain also required same 23 days after flowering to reach the maximum weight. At the lowest temperature range of $17/9^{\circ}C$, Jinheung required 68 days and Lengkwang 53 days after flowering to reach maximum grain weight. The whole panicle took 10 to 15 days later than the special spikelets to reach the maximum weight. At lower-than-optimum temperature range $(l7/9^{\circ}C\;and\;20/12^{\circ}C)$, all IR 36 plant died within 15 days after flowering. In the case of indica-japonica varieties all plants died within 15 days only at $17/9^{\circ}C$. There were more chalky grains when the temperature was higher and lower than optimum. The highest and lowest temperature range produced dead rice (black and dark red rice). Lower than optimum temperature ranges $(17/9^{\circ}C\;and\;20/12^{\circ}C)$ affected grain quality (length, width and depth) at these temperature ranges, grains were shorter, narrower, and thinner than grains at the optimum temperature of $26/18^{\circ}C$. With regared and the effects of temperature on frequency of grain weight at grain filling stage of indica variety IR 36, the highest $(32/24^{\circ}C)$ and lowest $(23/15^{\circ}C)$ temperature ranges matched the frequency of grain weight curves. In Japonica variety Jinheung, at the three temperature ranges, that is, lowest $(17/9^{\circ}C)$ highest $(32/24^{\circ}C)$ and optimum $(26/18^{\circ}C)$, the frequency of grain weight curve showed very different patterns, In the case of indica-japonica variety Suweon 258, the frequency of grain weight curve was midway between that of IR 36 and Jinheung. Jinheung.

  • PDF

Seed Viability and Growth Characteristics of Eclipta prostrata (L.) L. (한련초의 종자생존력(種子生存力) 및 생장특성(生長特性))

  • Lee, H.K.;Moody, K.
    • Korean Journal of Weed Science
    • /
    • v.8 no.3
    • /
    • pp.309-316
    • /
    • 1988
  • Several experiments were conducted to investigate the achene viability and growth characteristics of Eclipta prostrata (L.) L. No dormancy and no after-ripening requirement were found for E. prostrata achenes. When achenes were stored at room temperature, germination did not decrease with up to 5 months storage. Large differences in loss of viability of E. prostrata achenes occurred when different dehydration methods were used. Immediate dehydration resulted in high viability, but slow dehydration resulted in severe loss of viability. Achene viability at shallow burial depths (5 and 10 cm deep) was lower under upland soil conditions than under lowland soil conditions. Seedling growth was greatly reduced when flooding to a depth of 10 cm occurred at or before the 4-leaf stage. Flooding after the 4-leaf stage stimulated stem elongation. Branching started from the second week and usually terminated at the tenth week. Leaf size was determined by the branch which are related to the assimilate supply. Flowering of E. prostrata started during the fifth week after emergence, and mature achenes were produced from the sixth week. Ten to 14 days were needed for the achenes to mature. About 14,000 achenes were produced on each plant. Achene production per week increased from the sixth week to the tenth week and thereafter it declined. The average number of achenes per inflorescence decreased with delay in flowering.

  • PDF

Trophic State Characteristics in Topjeong Reservoir and Their Relations among Major Quality Parameters (탑정저수지의 부영양화 특성 및 주요 변수 간의 상호관계)

  • Park, Yu-Mi;Lee, Eui-Haeng;Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.382-393
    • /
    • 2009
  • The objectives of this study were to characterize long-term annual and seasonal trophic state of Topjeong Reservoir using conventional variables of Trophic State Index (TSI) and to determine the empirical relations between the trophic parameters. For the analysis, we used water quality dataset of 1995$\sim$2007, which is obtained from the Ministry of Environment, Korea and the number of parameters was 9. Annual ambient mean values of TN and TP were 1.78 mg $L^{-1}$ and 0.03 mg $L^{-1}$, respectively and TN : TP ratios averaged 76, indicating that this system was nitrogen-rich hypertrophic, and was probably phosphorus-limitation for algal growth. Therefore, nitrogen varied little with seasons and years, and total phosphorus (TP) varied depending on season and year. Monsoon dilutions of TP occurred in August and monthly fluctuations of suspended solid (SS) was similar to those of chlorophyll-$\alpha$ (CHL). Annual mean values of BOD and $COD_{Mn}$ were 1.61 mg $L^{-1}$ and 4.23 mg $L^{-1}$, respectively and the interannual values were directly influenced by the intensity of annual rainfall. There were no significant differences in the trophic variables between the two sampling sites. Mean values of Trophic State Index (TSI, Carlson, 1977), based on TN, TP, CHL, and SD (Secchi depth), turned out as eutrophic state, except for the TN (hypertrophic). Regression analyses of log-transformed seasonal CHL against TP and TN showed that variation of the CHL was explained 37% by the variation of TP ($R^2$=0.37, p<0.001, r=0.616), but not by TN ($R^2$=0.03, p>0.05). Regression coefficient of $Log_{10}$CHL vs $Log_{10}SD$ was 0.330 (p<0.003, r=0.580), indicating that transparency is regulated by the organic matter in the system. Results, data suggest that one of the ways controlling the eutrophication would be a reduction of phosphorus from the watershed.

Distribution Patterns of Benthic Macroinvertebrates in Streams of Korea (우리나라 주요 하천 수계에서 저서성 대형무척추동물의 분포 특성)

  • Kwak, Ihn-Sil;Lee, Dae-Seong;Hong, Cheol;Park, Young-Seuk
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.1
    • /
    • pp.60-70
    • /
    • 2018
  • The distribution of benthic macroinvertebrates was investigated at 1,157 sites of 7 main water systems in Korea, including 442 sites of Han River system (Namhan River, Bukhan River, Han River main stream, Anseongcheon, etc.), 305 sites of Nakdong River system (Nakdong River, Hyeongsan River, Taehwa River, etc.), 199 sites of Geum River system (Geum River, Sapgyocheon, Mangyeong River, Dongjin River, etc.) 102 sites of Seomjin River system (Seomjin River), 102 sites of Yeongsan River system (Yeongsan River, Tamjin River, etc.), and 7 sites of Jeju stream system. A total of 151 families were found in the whole survey sites, including 141 families in Han River, 122 in Nakdong River, 115 in Geum River, 106 in Seomjin River, 113 in Yeongsan River, and 50 in Jeju. Chironomidae (20.8%) was the most dominant species in Korea, followed by Hydropsychidae (17.1%), Baetidae (12.6%), Tubificidae (10.3%), Heptageniidae (8.6%), Ephemerellidae (6.3%), Asellidae (2.7%), Leptophlebiidae (2.4%), Planariidae (1.7%), and Tipulidae (1.6%). Substrates compositions consisted of large sand (22.6%), large gravel (18.4%), silt (10.5%), and boulder (8.2%). The mean stream width was 133.5 m and the mean watercourse width was 61.7 m. The mean water depth and velocity were 30.2 cm and $33.1cm\;s^{-1}$, respectively. Results of cluster analysis based on distributional characteristics of benthic macroinvertebrates were divided into six groups according to the frequency of benthic macroinvertebrate taxa which appeared in the study area. Finally, altitude, current velocity and substrate composition were the most influencial factors determining the distribution patterns of macroinvertebrate communities.

Enhanced Bioslurping System for Remediation of Petroleum Contaminated Soils (Enhanced Bioslurping system을 이용한 유류오염 토양의 복원)

  • Kim Dae-Eun;Seo Seung-Won;Kim Min-Kyoung;Kong Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.35-43
    • /
    • 2005
  • Bioslurping combines the three remedial approaches of bioventing, vacuum-enhanced free-product recovery, and soil vapor extraction. Bioslurping is less effective in tight (low-permeability) soils. The greatest limitation to air permeability is excessive soil moisture. Optimum soil moisture is very soil-specific. Too much moisture can reduce air permeability of the soil and decrease its oxygen transfer capability. Too little moisture will inhibit microbial activity. So Modified Fenton reaction as chemical treatment which can overcome the weakness of Bioslurping was experimented for simultaneous treatment. Although the diesel removal efficiency of SVE process increased in proportion to applied vacuum pressure, SVE process was difficulty to remediation quickly semi- or non-volatile compounds absorbed soil strongly. And SVE process had variation of efficiency with distance from the extraction well and depth a air flow form of hemisphere centering around the well. Below 0.1 % hydrogen peroxide shows the potential of using hydrogen peroxide as oxygen source but the co-oxidation of chemical and biological treatment was impossible because of the low efficiency of Modified Fenton reaction at 0.1 % (wt) hydrogen peroxide. NTA was more efficiency than EDTA as chelating agent and diesel removal efficiency of Modified Fenton reaction increased in proportion to hydrogen peroxide concentration. Hexadecane as typical aliphatic compound was removed less than Toluene as aromatic compound because of its structural stability in Modified Fenton reaction. What minimum 10% hydrogen peroxide concentration has good remediation efficiency of diesel contaminated groundwater may show the potential use of Modified Fenton reaction after bioslurping treatment.

Effect of Season on Testis Function and Freezing and Fertilizing Ability of Spermatozoa in Korean Native Goat I. Seasonal Changes in Semen Characteristics and Freezing and Penetrating Ability of Sperm (한국재래산양에서 계절이 정소기능, 정자의 내동성 및 수정능력에 미치는 영향 I. 정액성상과 정자의 내동성 및 난자침입능력의 계절적 변화)

  • Kim, C.K.;Chung, Y.C.;Kim, K.S.;Yoon, J.T.;Lee, J.H.;Chung, Y.H.;Choi, S.H.;Kim, H.Y.;Kim, S.;Kwon, C.J.
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.4
    • /
    • pp.311-323
    • /
    • 1994
  • This study was conducted to observe seasonal and individual changes in semen characteristics and sperm freezability, and sperm penetration into zona-free hamster eggs in Korean native goats. Buck response and change in semen characteristics to electrical stimulations was evaluated for four seasons throughout 2 years and percentage of motile sperm and normal apical ridge acrosome was investigated after equilibration and thawing for 4 seasons with 5 bucks. Sperm penetration rate was evaluated for 4 bucks. 1. Probe insertion at depth of 7cm and repeated stimulation for 3 sec was more effective(P<0.05) in buck response and semen collection than those of other conditions. 2. Semen characteristics from electrojaculation was signficantly(P<0.005) higher in spring and fall for semen volume, in spring and summer for sperm concentration and in fall for sperm motility than those in other seasons, respectively. However, there were no differences in total sperm among seasons. 3. Buck response to electrical stimulation showed significant difference(P<0.05) among individuals in all 3 seasons except winter. Significant individual difference in semen volume was only in spring and summer, but there was no indivudual difference in sperm concentration and total sperm in all season. 4. Washing of semen before freezing treatment was greatly(P<0.05) beneficial to sperm motility after thawing, no matter whether ejaculates exhibit egg yolk coagulation or not. 5. Sperm motility after glycerol equilibration was significantly(P<0.05) low in summer semen and motility after thawing was greatly(P<0.05) higher in winter semen than in other seasons. Freezability of unwashed sperm was significantly difference among bucks, but a yearly freezability of washed sperm after chilling and thawing were no differences among bucks and percentage of normal apical ridge acrosome were not different among seasons and bucks. 6. There was no significant difference in sperm motility after thawing between egg yolk levels in summer, although 20% level gave more higher motility than 5% level. 7. In summer, 3.2% glycerol and 3-h equilibration gave greatest percentage(P<0.05) of sperm motility and normal apical ridge acrosome after thawing. 8. Sperm penetration rate into zona-free hamster eggs was not different between bucks and seasons. Overall, it is concluded that to obtain maximum sperm output and successive semen freezing by electrojaculation method, buck selection with good response in all season could be basically considered and that seasonal effect on sperm freezability was more greater than that of individual bucks.

  • PDF

Evaluation of the Sealing Capacity of the Supercritical CO2 by the Measurement of Its Injection Pressure into the Tuff and the Mudstone in the Janggi Basin (초임계이산화탄소(scCO2) 주입압력 측정에 의한 장기분지 응회암과 이암의 scCO2 차폐능 평가)

  • An, Jeongpil;Lee, Minhee;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.50 no.4
    • /
    • pp.303-311
    • /
    • 2017
  • The laboratory scale experiment was performed to evaluate the sealing capacity of the capping rock such as tuff and mudstone, measuring the intial supercritical $CO_2$ ($scCO_2$) injection pressure and the $scCO_2$-water-rock reaction for 90 days. The drilling cores sampled from 800 m in depth around the Janggi basin, Korea were used for the experiment. The mineralogical changes of mudstone and tuff were measured to evaluate the geochemical stability during the $scCO_2$-water-rock reaction at $CO_2$ storage condition (100 bar and $50^{\circ}C$). The rock core was fixed in the high pressurized stainless steel cell and was saturated with distilled water at 100 bar of pore water pressure. The effluent of the cell was connected to the large tank filled with 3 L of water and 2 L of $scCO_2$ at 100 bar, simulating the subsurface injection condition. The $scCO_2$ injection pressure, which was higher than 100 bar, was controlled at the influent port of the cell until the $scCO_2$ begin to penetrate into the rock and the initial injection pressure (> 100 bar) of $scCO_2$ into the rock was measured for each rock. The mineralogical compositions of mudstones after 90 days reaction were similar to those before the reaction, suggesting that the mudstone in the Janggi basin has remained relatively stable for the $scCO_2$ involved geochemical reaction. The initial $scCO_2$ injection pressure (${\Delta}P$) of a tuff in the Janggi basin was 15 bar and the continuous $scCO_2$ injection into the tuff core occurred at higher than 20 bar of injection pressure. For the mudstone in the Janggi basin, the initial $scCO_2$ injection pressure was higher than 150 bar (10 times higher than that of the tuff). From the results, the mudstone in Janggi basin was more suitable than the tuff to shield the $scCO_2$ leakage from the reservoir rock at subsurface.

Runoff of Endosulfan by Rainfall Simulation and from Soybean-grown Field Lysimeter (인공강우와 콩재배 포장 라이시메타를 이용한 endosulfan의 유출량 평가)

  • Kim, Chan-Sub;Lee, Hee-Dong;Ihm, Yang-Bin;Im, Geon-Jae
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.4
    • /
    • pp.343-350
    • /
    • 2007
  • Three different experiments were carried out to investigate the runoff and erosion losses of endosulfan from sloped-field by rainfall. The mobility of endosulfan and which phase it was transported by were examined in adsorption study, the influence of rainfall pattern and slope degree on the pesticide loss were evaluated in simulated rainfall study, and the pesticide losses from soybean-grown field comparing with bare soil were measured in field lysimeter study. Adsorption parameter (K) of endosulfan ranged from 77 to 131 by adsorption method and K values by the desorption method were higher than those by the adsorption method. By the SSLRC's classification for pesticide mobility endosulfan was classified as non-mobile class ($K_{oc}>4,000$). Runoff and erosion loss of endosulfan by three rainfall scenarios ranged from 3.4 to 5.6%and from 4.4 to 15.6%of the amount treated. Endosulfan residues were mainly remained at the top 5 cm of soil depth after the simulated rainfall study. Pesticide loss in case of 30%-slope degree ranged from 0.6 to 0.9 times higher than those in case of 10%-slope degree. The difference of pesticide runoff loss was related with its concentration in runoff water and the difference of pesticide erosion loss would related closely with the quantity of soil eroded. Endosulfan losses from a series of lysimeter plots in sloped land by rainfall ranged from 5 to 35% of the amount treated. The erosion rate of endosulfan from soybean-plots was 66% of that from bare soil plots. The effect of slope conditions was not great for runoff loss, but was great for erosion loss as increasing to maximum $4{\sim}12$ times with slope degree and slope length. The peak runoff concentration of endosulfan in soybean-plots and bare soil plots ranged from 8 to 10 and from 7 to $9{\mu}gL^{-1}$ on nine plots with different slope degree and slope length. Therefore the difference of the peak runoff concentrations between bare soil plots and soybean-plots were not great.

A Study on the Forest Vegetation and Soil-environmental Factors Affecting the Water Quality of Iwonch on Stream (이원천 수질에 미치는 삼림식생과 토양환경요인)

  • Bang, Je-Yong;Yang, Keum-Chul
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.2
    • /
    • pp.183-190
    • /
    • 2009
  • Characterization of the analysis of forest vegetation, soil environmental conditions and water quality were performed from March 2003 to March 2007. The two basins were characterized by cultivated area (Kaesim reservoir) and mountain area (Jangchan reservoir), and divided into eleven small basins, where dynamics of pollutants, forest vegetation and soil environmental conditions were surveyed. The vegetation can be divided into 10 types by $Z\ddot{u}rich$-Montpellier school's method. Pearson coefficients between vegetation type and water quality were correlated with dissolved oxygen (DO) in the Quercus variabilis community at the 5% level and total phosphorus (TP) in the Larix leptolepis plantation at the 1% level. Especially total phosphorous and total nitrogen increased in small basins where the proportion of cultivated and residential area increased. The analysis of influences of pollutant discharge on water quality showed that pollutant charge was very low in forest land area ($Y_{T-P}$=-0.0017X+0.2215, r=0.16, $Y_{COD}$=- 0.0395X+8.5051 r=0.47). The soil types of western area were comparatively simple, but those of eastern area were complicated with regosols, red-yellow soils, lithosoles, etc. The pH, total solid (TS) and volatile substance (VS) of the forest and agricultural land soils collected in each site were 5.4~6.9, 75.8~80.2%, and 3.80%~5.80%, respectively. According to the analytical result of soil environmental conditions, heavy metal contents fell short to the mean value of natural conditions. Runoff amount (Y) and depth of topsoil (X) were negatively correlated, $Y_{ron}=-1.0088X_{top}+35.378$ (r=0.68). The correlation was much lower in up-stream but much higher in down-stream, because permeation into soil particle was larger on down-stream due to its more or less gentle slope. Pearson coefficients between soil pH and water pH were statistically significant at 1% level.

Dynamic Behavior of Model Set Net in the Flow (모형 정치망의 흐름에 대한 거동)

  • Jung, Gi-Cheul;Kwon, Byeong-Guk;Le, Ju-Hee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.4
    • /
    • pp.275-284
    • /
    • 1997
  • This experiment was carried out to measure the sinking depth of each buoy, the change in the net shape of the net, and the tension of sand bag line according to the R (from bag net to the fish court) and L (from fish court to the bag net) current directions and their velocity by the model experiment. The model net was one-fiftieth of the real net, and its size was determined after considering the Tauti’s Similarity Law and the dimension of the experimental tank. 1. The changes of the net shape were as follows : In the current R, the end net of fish court moved 20mm down the lowerward tide and 10mm upper part. So the whole model net moved up at 0.2m/sec. The shape of the net showed an almost linear state from bag net to the fish court at 0.6m/sec. In the current L, the door net moved 242mm down the lowerward tide and 18mm upper part. So the whole model net moved up at 0.2m/sec. The net shape showed an almost linear state from the fish court to the bag net at 0.5m/sec. 2. The sinking depths of each buoy were as follows: In the current R, the head buoy started sinking at 0.2m/sec and sank 20mm, 99mm at 0.3m/sec and 0.6m/sec, respectively. The end buoy didn't sink from 0m/sec to 0.6m/sec but showed a slight quake. In the current L, the end buoy started sinking at 0.1m/sec, and sank 5mm and 108mm at 0.2m/sec and 0.6m/sec, respectively. The whole model net sank at 0.5m/sec except the head buoy. 3. The changes of the sand bag line tension were as follows: In the current R, the tension affected by the sand bag line of the head buoy showed 273.51g at 0.1m/sec increased to 1298.40g at 0.6m/sec. In the current L, the tension affected by the sand bag line of the end buoy on one side showed 137.08g at 0.1m/sec increased to 646.00g at 0.6m/sec. The changes in the sand bag line tension were concentrated on the sand bag line of the upperward tide with increasing velocity at the R and L current directions. However, no significant increase in tension was observed in the other sand bag lines.

  • PDF