• Title/Summary/Keyword: a-amylase activity

Search Result 755, Processing Time 0.025 seconds

Molecular Cloning of Thermostable $\alpha$-Amylase and Maltogenci Amylase Genes from Bacillus licheniformis and Characterization of their Enzymatic Properties (Bacillus licheniformis의 내열성 $\alpha$-amylase 및 maltogenic amylase 유전자의 분리와 그 효소 특성)

  • Kim In-Cheol
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 1991.04a
    • /
    • pp.225-236
    • /
    • 1991
  • The genes encoding the thermostable $\alpha$-amylase and maltogenic amylase from Bacillus lichenciformis were cloned and expressed in E. coli. The recombinant plasmid pTA322 was found to contain a 3.1kb EcoRI genomic DNA fragment of the thermostable $\alpha$-amylase. The cloned $\alpha$-amylase was compared with the B. licheniformis native $\alpha$-amylase. Both $\alpha$-amylase have the same optimal temperature of $70^{\circ}C$ and are stable in the pH range of 6 and 9. The complete nucleotide sequences of the thermostable $\alpha$-amylase gene were determined. It was composed of one open reading rame of 1,536 bp. Start and stop codons are ATG and TAG. From the amino acid sequence deduced from the nucleotide sequence, the cloned thermostable $\alpha$-amylase is composed of 483 amino acid residues and its molecular weight is 55,200 daltons. The content of guanine and cytosine is $47.46mol\%$ and that of third base codon was $53_41mol\%$. The recombinant plasmid, pIJ322 encoding the maltogenic amylase contains a 3.5kb EcoRI-BamHI genomic DNA fragment. The optimal reaction temperature and pH of the maltogenci amylase were $50^{\circ}C$ and 7, respectively. The maltogenic amylase was capable of hydrolysing pullulan, starch and cyclodextrin to produce maltose from starch and panose from pullulan. The maltogenic amylase also showed the transferring activity. The maltogenic amylase gene is composed of one open reading frame of 1,734bp. Start and stop codons are ATG and ATG. At 2bp upstream from start codon, the nucleotide sequence AAAGGGGGAA seems to be the ribosome-binding site(RBS, Shine-Dalgarno sequence). A putative promoter(-35 and-10 regions) was found to be GTTAACA and TGATAAT. From deduced amino acid sequence from the nucleotide srquence, this enzyme was comosed of 578 amino acid residues and its molecular weight was 77,233 daltons. The content of guanine and cytosine was $48.1mol\%$. The new recombinant plasmid, pTMA322 constructed by inserting the thermostable $\alpha$-amylase gene in the EcoRI site of pIJ322 to produce both the thermostable $\alpha$-amylase and the maltogenic amylase were expressed in the E. coli. The two enzymes expressed from E. coli containing pTMA322 was reacted with the $15\%$ starch slurry at $40^{\circ}C$ for 24hours. The distribution of the branched oligosaccharides produced by the single-step process was of the ratio 50 : 50 between small oligosaccharide up DP3 and large oligosaccharide above DP3.

  • PDF

Enhanced Production of Soluble Pyrococcus furiosus α-Amylase in Bacillus subtilis through Chaperone Co-Expression, Heat Treatment and Fermentation Optimization

  • Zhang, Kang;Tan, Ruiting;Yao, Dongbang;Su, Lingqia;Xia, Yongmei;Wu, Jing
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.570-583
    • /
    • 2021
  • Pyrococcus furiosus α-amylase can hydrolyze α-1,4 linkages in starch and related carbohydrates under hyperthermophilic condition (~ 100℃), showing great potential in a wide range of industrial applications, while its relatively low productivity from heterologous hosts has limited the industrial applications. Bacillus subtilis, a gram-positive bacterium, has been widely used in industrial production for its non-pathogenic and powerful secretory characteristics. This study was conducted to increase production of P. furiosus α-amylase in B. subtilis through three strategies. Initial experiments showed that co-expression of P. furiosus molecular chaperone peptidyl-prolyl cis-trans isomerase through genomic integration mode, using a CRISPR/Cas9 system, increased soluble amylase production. Therefore, considering that native P. furiosus α-amylase is produced within a hyperthermophilic environment and is highly thermostable, heat treatment of intact culture at 90℃ for 15 min was performed, thereby greatly increasing soluble amylase production. After optimization of the culture conditions (nitrogen source, carbon source, metal ion, temperature and pH), experiments in a 3-L fermenter yielded a soluble activity of 3,806.7 U/ml, which was 3.3- and 28.2-fold those of a control without heat treatment (1,155.1 U/ml) and an empty expression vector control (135.1 U/ml), respectively. This represents the highest P. furiosus α-amylase production reported to date and should promote innovation in the starch liquefaction process and related industrial productions. Meanwhile, heat treatment, which may promote folding of aggregated P. furiosus α-amylase into a soluble, active form through the transfer of kinetic energy, may be of general benefit when producing proteins from thermophilic archaea.

Studies on the Digestive Enzyme of Cynthia roretzi V. Drasche. II. Some propeinic properties of Amylase. (우릉쉥이(Cynthia roretzi v. Drasche)의 소화효소에 대하여 (제2보) Proteinase의 효소적 성질)

  • 서석수;양한석
    • YAKHAK HOEJI
    • /
    • v.5 no.1
    • /
    • pp.51-55
    • /
    • 1960
  • Some enzymatic properties of Cynthia roretzi V. Drasche (Korean:U-Rung-Shei) was studied by author and obtained the following results; 1. The optimum pH of the digestive gland proteinase ws 7.4-7.6 2. Activity of metallic ion on the Proteinase showed following order; 10$^{-3}$ M. M $n^{++}$>1-$^{-3}$ M. $Co^{++}$>10$^{-4}$ M. $Mg^{++}$\ulcorner10$^{-2}$ M.S $r^{++}$. Inhibition of metallic ion on the Proteinase showed following order: 10$^{-3}$ M. A $g^{+}$>10$^{-3}$ M. c $d^{++}$>10$^{-3}$ M. P $b^{++}$>10$^{-3}$ M. Z $n^{++}$ 3. The digestive gland enzyme inactivated at 70.deg. C, but no influence at 50.deg. C. 4. When the enzyme concentration increase 2 times, and 3 times, the enzymatic activity also increase, but not proportionally 5. The digestive gland Proteinase showed remarkably higher enzymatic activity than the intestinal Proteinase. 6. The digestive gland amylase brom the ascidion showed remarkably higher enzymatic activity than the heptaponcreatic amylase from shell fish (Turbo (Batillus) Cornutus Solander).).er).).).er).).

  • PDF

Molecular Identification of Four Different α-amylase Inhibitors from Baru (Dipteryx alata) Seeds with Activity Toward Insect Enzymes

  • Bonavides, Krishna B.;Pelegrini, Patricia B.;Laumann, Raul A.;Grossi-De-Sa, Maria F.;Bloch, Carlos Jr.;Melo, Jorge A.T.;Quirino, Betania F.;Noronha, Eliane F.;Franco, Octavio L.
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.494-500
    • /
    • 2007
  • The endophytic bruchid pest Callosobruchus maculatus causes severe damage to storage cowpea seeds, leading to economical losses. For this reason the use of $\alpha$-amylase inhibitors to interfere with the pest digestion process has been an interesting alternative to control bruchids. With this aim, $\alpha$-amylase inhibitors from baru seeds (Dipteryx alata) were isolated by affinity chromatographic procedures, causing enhanced inhibition of C. maculatus and Anthonomus grandis $\alpha$-amylases. To attempt further purification, this fraction was applied onto a reversed-phase HPLC column, generating four peaks with remarkable inhibition toward C. maculatus $\alpha$-amylases. SDS-PAGE and MALDI-ToF analysis identified major proteins of approximately 5.0, 11.0, 20.0 and 55 kDa that showed $\alpha$-amylase inhibition. Results of in vivo bioassays using artificial seeds containing 1.0% (w/w) of baru crude extract revealed 40% cowpea weevil larvae mortality. These results provide evidence that several $\alpha$-amylase inhibitors classes, with biotechnological potential, can be isolated from a single plant species.

Isolation of Aspergillus niger K-25 Prroducing Acid-stable ${\alpha}-amylase$ (내산성(耐酸性) 아밀라제를 생산하는 Aspergillus niger 균주의 분리)

  • Cho, Myung-Hwan
    • The Korean Journal of Mycology
    • /
    • v.17 no.3
    • /
    • pp.149-153
    • /
    • 1989
  • One strain of Aspergillus niger K-25 producing an acid-stable ${\alpha}-amylase$ was isolated from the soil. The optimum culture conditions were investigated. The production of the acid-stable ${\alpha}-amylase$ was enhanced when the strain was incubated in a medium containing soluble starch 3.5%, peptone 2%, $KH_2PO_4$ 0.5%, $MaSO_4{\cdot}7H_2O$ 0.25% and $FeCI_3$ 1.0% at pH 3 for 7 days. However, higher activity of acid-stable ${\alpha}-amylase$ was demonstrated on wheat bran culture. Amylase production was doubled when A. niger K-25 was incubated on the wheat bran supplemented with fumaric acid buffer (pH 3).

  • PDF

Characterization of Novel Amylase-Sensitive, Anti-Listerial Class IId Bacteriocin, Agilicin C7 Produced by Ligilactobacillus agilis C7

  • Jeong Min Yoo;Ji Hoon Song;Robie Vasquez;In-Chan Hwang;Jae Seung Lee;Dae-Kyung Kang
    • Food Science of Animal Resources
    • /
    • v.43 no.4
    • /
    • pp.625-638
    • /
    • 2023
  • Among various biological agents, bacteriocins are important candidates to control Listeria monocytogenes which is a foodborne pathogen. In this study, a novel bacteriocin, named agilicin C7, was isolated from Ligilactobacillus agilis C7 showing inhibitory activity against L. monocytogenes. Agilicin C7 biosynthesis gene was characterized by bioinformatics analyses and heterologously expressed in Escherichia coli for further study. The anti-listeria activity of recombinant agilicin C7 (r-agilicin C7) was lost by proteases and α-amylase, suggesting that agilicin C7 is a glycoprotein. r-Agilicin C7 has wide pH and thermal stability and is also stable in various organic solvents. It destroyed L. monocytogenes by damaging the integrity of the cell envelope. These properties of r-agilicin C7 indicate that agilicin C7 is a novel amylase-sensitive anti-listerial Class IId bacteriocin. Physicochemical stability and inhibitory activity against L. monocytogenes of r-agilicin C7 suggest that it can be applied to control L. monocytogenes in the food industry, including dairy and meat products.

Isolation and Identification of Inhibitory Compounds from Morus alba cv. Kuksang on α-amylase and α-glucosidase (국상(Kuksang) 뽕잎(Morus alba L.)으로부터 α-amylase와 α-glucosidase 저해 물질 분리 및 동정)

  • Choi, Moo-Young;Cho, Young-Je
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.870-879
    • /
    • 2015
  • The objective of this research was to evaluate the inhibitory activities of phenolic compounds isolated from mulberry (Morus alba) leaves of 109 types against α-amylase and α-glucosidase. The inhibitory activity of the water extracts from Morus alba cv. Kuksang against α-amylase and α-glucosidase were determined as 93.8% and 48.7% respectively. The total phenolic content of extracts from Morus alba cv. Kuksang was 9.7±0.2 mg/g soluble in water and 14.3±0.2 mg/g soluble in ethanol. The inhibitory activity of the water extracts from Morus alba cv. Kuksang at 200 μg/ml phenolics concentration against α-amylase and α-glucosidase were determined as 100% and 82.6% respectively. The purification of inhibitory compounds was carried out by Sephadex LH-20 and MCI-gel CHP-20 column chromatography using a gradient elution procedure by nomal phase type (EtOH→distilled water) and reverse phase type (distilled water→MeOH). The quercetin was confirmed to be the chemical structure of the inhibitory compound against α-amylase and α-glucosidase by spectroscopic analysis of FAB-MS, NMR and IR spectrum.

Cloning of Bacillus amyloliquefaciens amylase gene using YEp 13 as a vector II. Expression of cloned amylase gene in Saccharomyces cerevisiae (YEp 13 vector를 이용한 Bacillus amyloliquefaciens amylase gene의 cloning II. Saccharomyces cerevisiae에서의 발현)

  • 김관필;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.3
    • /
    • pp.209-212
    • /
    • 1986
  • $\alpha$-Amylase gene of Bacillus amyloliquetaciens was cloned on plasmid YEp13, S. cerevisiae-E. coli shuttle vector. Hybrid plasmid pTG17, carrying $\alpha$-amylase gene of B. amyloliquefaciens, was transformed to E. coli and the expression of it in yeast was investigated. This plasmid was unstable in E. coli and produced two minor plasmids, pTG17-1 and PTG17-2, which resulted from the segregation of it. Transformant of S. cerevisiae MC16 with pTG17-1 plasmid was not appeared on SD medium because of the Leu2 gene defection. S. cerevisiae could be transformed by the hybrid plasmid, and $\alpha$-amylase activity of the yeast transformant was detected by somogyi-Nelson method and agar diffusion method.

  • PDF

Chemical Modification of Lysine Residues in Bacillus licheniformis α-Amylase: Conversion of an Endo- to an Exo-type Enzyme

  • Habibi, Azadeh Ebrahim;Khajeh, Khosro;Nemat-Gorgani, Mohsen
    • BMB Reports
    • /
    • v.37 no.6
    • /
    • pp.642-647
    • /
    • 2004
  • The lysine residues of Bacillus licheniformis $\alpha$-amylase (BLA) were chemically modified using citraconic anhydride or succinic anhydride. Modification caused fundamental changes in the enzymes specificity, as indicated by a dramatic increase in maltosidase and a reduction in amylase activity. These changes in substrate specificity were found to coincide with a change in the cleavage pattern of the substrates and with a conversion of the native endo- form of the enzyme to a modified exo- form. Progressive increases in the productions of $\rho$-nitrophenol or glucose, when para nitrophenyl-maltoheptaoside or soluble starch, respectively, was used as substrate, were observed upon modification. The described changes were affected by the size of incorporated modified reagent: citraconic anhydride was more effective than succinic anhydride. Reasons for the observed changes are discussed and reasons for the effectivenesses of chemical modifications for tailoring enzyme specificities are suggested.

Changes in Enzyme Acrivities of Salted Chinese cabbage and Kimchi during Salting and Fermentation (배추의 소금절임과 김치숙성 중 효소류의 활성변화)

  • 오영애;김순동
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.3
    • /
    • pp.404-410
    • /
    • 1997
  • Amylase, protease, polygalacturonase and $\beta$-galactosidase activities were monitored during salting of Chinese cabbage and kimchi fermentation at 1$0^{\circ}C$. A part of enzymes in the tissue of Chinese cabbage were eluted during salting, and other remained enzymes activities were decreased in proportion to the amount of elution. But total enzyme activities were increased during salting. Amylase, protease and polygalacturonase activities decreased at the early fermentation stage but increased at the late fermentation stage. $\beta$-Galactosidase activity was continuously increased during all periods of fermentation. Enzymic actions at the early fermentation stage come from Chinese cabbge and at the late fermentation stage come from major microorganisms in kimchi fermentation. Kimchi fermentation involves the activation of the enzymes by salting; hydrolysis of micromoleculars such as polysaccarides cell wall composed polysaccarides and proteins of cell wall during early fermentation of kimchi; overripening of the kimchi caused by propagation of homofermentative lactic acid bacteria which demand autotroph.

  • PDF