• Title/Summary/Keyword: a teleoperation

Search Result 189, Processing Time 0.037 seconds

Predictive Control of Bilateral Teleoperation with Short Time Delay (시간 지연이 있는 양방향 원격제어 시스템의 예측 제어)

  • Im, Heung-Jae;Chung, Wan-Kyun;Suh, Il-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.295-304
    • /
    • 2000
  • In the teleoperation system, force and velocity signals are communicated between a master and a slave robot. The addition of force feedback to a teleoperation system benefits the operator by providing more information to perform given tasks especially for tasks requiring contact with environment. When the master and slave arms are located in different places, time delay is unavoidable and it is well known that the system can become unstable when even a small time delay exists in the communication channel. The control scheme proposed in this paper is based on the estimator with virtual master model. Delayed signal from the master robot can be replaced by the estimated signal with the virtual master model. This control scheme makes the teleoperation system stable for the given time delay while the conventional scheme is not. This new control scheme is verified through numerical simulations and an experiments using the dual axis testbed of the teleoperation system.

  • PDF

3D Information based Visualization System for Real-Time Teleoperation of Unmanned Ground Vehicles (무인 지상 로봇의 실시간 원격 제어를 위한 3차원 시각화 시스템)

  • Jang, Ga-Ram;Bae, Ji-Hun;Lee, Dong-Hyuk;Park, Jae-Han
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.220-229
    • /
    • 2018
  • In the midst of disaster, such as an earthquake or a nuclear radiation exposure area, there are huge risks to send human crews. Many robotic researchers have studied to send UGVs in order to replace human crews at dangerous environments. So far, two-dimensional camera information has been widely used for teleoperation of UGVs. Recently, three-dimensional information based teleoperations are attempted to compensate the limitations of camera information based teleoperation. In this paper, the 3D map information of indoor and outdoor environments reconstructed in real-time is utilized in the UGV teleoperation. Further, we apply the LTE communication technology to endure the stability of the teleoperation even under the deteriorate environment. The proposed teleoperation system is performed at explosive disposal missions and their feasibilities could be verified through completion of that missions using the UGV with the Explosive Ordnance Disposal (EOD) team of Busan Port Security Corporation.

A new approach to passive bilateral teleoperation with varying time delay (가변 시간 지연에 대해 안정한 쌍방향 텔레오퍼레이션)

  • Zhang, Changlei;Lee, Yee-Dong;Zhang, Yuanliang;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.23-25
    • /
    • 2005
  • This paper is devoted to the passivity based control in bilateral teleoperation for varying time delay. Toimprove the stability and task performance, master and slave in bilateral teleoperation must be coupled via the network through which the force and velocity are communicated. However, time delay existing in the transmission channel is a long standing impediment to bilateral control and can destabilize the system, even if the system is stable without time delay, In this paper, we investigate how the varying time delay affects the advanced teleoperation stability and results in an out-of-control status. A new approach based on passivity control has been bilaterally designed for both the master and slave sites and the simulation result will verify that our approach is better and effective for passive bilateral teleoperation.

  • PDF

Aperiodic Gait Control based on Periodic Gait fo Teleoperation of a Quadruped Walking Robot (4족 보행로봇의 원격조종을 위한 주기 걸음새 기반의 비주기적 걸음새 제어)

  • 최명호;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.397-397
    • /
    • 2000
  • This paper presents a gait control scheme for teleoperation of a quadruped-walking robot. In teleoperation of a walking robot, an operator gives a real-time generated velocity command to a walking robot instead of a moving trajectory. When the direction of the velocity command is changed, the periodic gait is not available because this requires an initial foot position . This paper proposes the aperiodic gait control scheme that can converge to a periodic gait Simulation results are given to demonstrate the efficiency of the proposed control scheme.

  • PDF

Passivity Problem of Micro-Teleoperation Handling a Insignificant Inertial Object.

  • Park, Kyongho;W.K. Chung;Y. Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.32.5-32
    • /
    • 2001
  • There has been many teleoperation systems handling the micro object. However, the stability problem for these systems has not been mentioned yet. Historically, Lawrence[1] proposed the Transparency-Optimized Architecture and passivity theorem for stability analysis of bilateral teleoperation. He claimed that unless the task(or environment) impedance contains significance inertial behavior, Passivity condition for Transparency-optimized architecture is not satisfied. In this paper we propose one method which satisfies passivity condition for the micro-teleoperation system handling a insignificant inertial object and is based on the structure of Lawrence and Hashtrudi-Zaad[2] and velocity-force scaling.

  • PDF

A Dexterous Teleoperation System for Micro Parts Handling (마이크로 조립시스템의 원격제어)

  • Kim, Deok-Ho;Kim, Kyung-Hwan;Kim, Keun-Young;Park, Jong-Oh
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.158-163
    • /
    • 2001
  • Operators suffer much difficulty in manipulating micro/nano-sized objects without the assistance of human interfaces, due to the scaling effects in micro/nano world. This paper presents a micro manipulation system based on the teleoperation techniques which enables the operators to manipulate the objects with ease by transferring both human motion and manipulation skill to a micromanipulator. An experimental setup consisting of a micromanipulator operated under stereo-microscope with the help of intelligent user interface provides a tool that can be used to visualize and manipulate micro-sized 3D objects in a controlled manner. The key features of a micro manipulation system and control strategies using teleoperation techniques for handling micro objects are presented. Experimental results demonstrate the feasibility of this system in precisely controlling trapping and manipulation of micro objects based on teleoperation techniques.

  • PDF

Passive-based Bilateral Controller Design under Varying Time Delay

  • Gu, Ying;Chong, Kil-To
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.97-99
    • /
    • 2009
  • Bilateral teleoperation systems, connected to computer networks such as Internet have to deal with the time delay varying depending on factors such as congestion, bandwidth or distance. And the entire system is easy to become unstable due to irregular time delay. Passivity concept has been using as a framework to solve the stability problem in bilateral control of teleoperation. Acontrol scheme for teleoperation systems with varying time delay is proposed based on a passivity concept is proposed in this paper. One approach makinguse of the characteristic impedances is proposed to achieve a passive control. Since passive control does not mean that the system performance will be acceptable, another transmission scheme which focuses on both the passive feature and the acceptable performance is configured for varying time delay in this paper. The tracking performance has been proved through the computer simulation for varying time delay bilateral teleoperation system using Matlab Simulink.

  • PDF

An OS Platform Independent Architecture of Web-based Teleoperation for mobile robot

  • Ko, Deok-Hyeon;Lee, Soon-Geul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.346-349
    • /
    • 2004
  • The teleoperation system applies all of the industrial fields due to the development of the network infrastructure. It is one of the indispensable elements for controlling the robot at a remote sight and monitoring the limit or unknown environment. The common teleoperation robot system is what has the visual module to supply the network system and realistic UI to the existed robot system. Therefore, remarked that the fusion between modules and transmission of visual data the remarked the important element to improve the robot application in the various environments. Delay of development time by robot platform and noneffective communication among developers are also problem to approach. In this paper we propose the independent teleoperation system. The main application language is JAVA in this system, which is applied JAVA API like JNI and JMF to construct the effective teleoperation system. The system has the both side communication system between sever and client as a basic structure. The visual data that is attached the robot at a remote sight is captured by JMF API and then is transmitted to the web browser called client by RTR protocol. JNI is used to connect between JAVA and the lower part application (sensor fusion, motion control.) of the robot programmed by various Native languages. The proposed system is the application that can perform the elements, for instance transmission of visual data, the fusion of various native application modules and the effective network communication, with any platform.

  • PDF

Neural network-based control for uneven delay-time systems (인공신경망을 이용한 지연시간이 일정치 않은 시스템의 제어)

  • 이미경;이지홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.446-449
    • /
    • 1997
  • We propose a control law in discrete time domain of the bilateral feedback teleoperation system using neural network and the reference model type of adaptive control. Different from traditional teleoperation systems, the transmission time delay irregularly changes. The proposed control method controls master and slave systems through identification of master and slave models using neural networks.

  • PDF

Study on Net Assessment of Trustworthy Evidence in Teleoperation System for Interplanetary Transportation

  • Wen, Jinjie;Zhao, Zhengxu;Zhong, Qian
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1472-1488
    • /
    • 2019
  • Critical elements in the China's Lunar Exploration reside in that the lunar rover travels over the surrounding undetermined environment and it conducts scientific exploration under the ground control via teleoperation system. Such an interplanetary transportation mission teleoperation system belongs to the ground application system in deep space mission, which performs terrain reconstruction, visual positioning, path planning, and rover motion control by receiving telemetry data. It plays a vital role in the whole lunar exploration operation and its so-called trustworthy evidence must be assessed before and during its implementation. Taking ISO standards and China's national military standards as trustworthy evidence source, the net assessment model and net assessment method of teleoperation system are established in this paper. The multi-dimensional net assessment model covering the life cycle of software is defined by extracting the trustworthy evidences from trustworthy evidence source. The qualitative decisions are converted to quantitative weights through the net assessment method (NAM) combined with fuzzy analytic hierarchy process (FAHP) and entropy weight method (EWM) to determine the weight of the evidence elements in the net assessment model. The paper employs the teleoperation system for interplanetary transportation as a case study. The experimental result drawn shows the validity and rationality of net assessment model and method. In the final part of this paper, the untrustworthy elements of the teleoperation system are discovered and an improvement scheme is established upon the "net result". The work completed in this paper has been applied in the development of the teleoperation system of China's Chang'e-3 (CE-3) "Jade Rabbit-1" and Chang'e-4 (CE-4) "Jade Rabbit-2" rover successfully. Besides, it will be implemented in China's Chang'e-5 (CE-5) mission in 2019. What's more, it will be promoted in the Mars exploration mission in 2020. Therefore it is valuable to the development process improvement of aerospace information system.