• Title/Summary/Keyword: a shallow water model

Search Result 399, Processing Time 0.028 seconds

A Study on the Resistance Characteristics of High-Speed Ship in Shallow Water Condition (천수영역에서 고속선박의 저항특성에 대한 연구)

  • 권수연;이영길
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.2
    • /
    • pp.1-11
    • /
    • 2004
  • In this paper, the resistance characteristics of high-speed ship are studied in the region of shallow water condition. For the purpose of this research, model tests in a ship model basin are carried out with an equipment for the satisfaction of shallow water condition, and the computions of wave resistance characteristics and the flow simulations around a ship hull are performed by Michell's thin ship theory and a finite difference method based on MAC scheme, respectively. The calculation results for the resistance and flow characteristics of a ship hull are compared with those from the model tests in deep and shallow water conditions. From the comparison results, it is known that the variation of wave pattern around a ship hull caused by shallow water condition has the most influence to the resistance characteristics of a high-speed ship advancing on shallow water.

A Study on Sensitivity Analysis of the Hydrodynamic Derivatives on the Maneuverability Prediction of KVLCC2 in Shallow Water by Model Test

  • Nguyen, Van Minh;Nguyen, Thi Thanh Diep;Yoon, Hyeon Kyu
    • Journal of Navigation and Port Research
    • /
    • v.44 no.2
    • /
    • pp.98-109
    • /
    • 2020
  • In recent years, there have been concerted efforts toward predicting ship maneuvering in shallow water since the majority of ship's accidents near harbors commonly occur in shallow and restricted waters. Enhancement of ship maneuverability at the design stage is crucial in ensuring that a ship navigates safely. However, though challenging, establishing the mathematical model of ship maneuvering motion is recognized as crucial toward accurately predicting the assessment of maneuverability. This paper focused on a study on sensitivity analysis of the hydrodynamic coefficients on the maneuverability prediction of KVLCC2 in shallow waters. Hydrodynamic coefficients at different water depths were estimated from the experimental results conducted in the square tank at Changwon National University (CWNU). The simulation of standard maneuvering of KVLLC2 in shallow waters was compared with the results of the Free Running Model Test (FRMT) in shallow waters from other institutes. Additionally the sensitivity analysis of all hydrodynamic coefficients was conducted by deviating each hydrodynamic derivative from the experimental results. The standard maneuvering parameters including turning tests and zig-zag maneuvers were conducted at different water depths and their effects on the standard maneuvering parameters were assessed to understand the importance of different derivatives in ship maneuvering in shallow waters.

Changes in the Hydrodynamic Characteristics of Ships During Port Maneuvers

  • Mai, Thi Loan;Vo, Anh Khoa;Jeon, Myungjun;Yoon, Hyeon Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.143-152
    • /
    • 2022
  • To reach a port, a ship must pass through a shallow water zone where seabed effects alter the hydrodynamics acting on the ship. This study examined the maneuvering characteristics of an autonomous surface ship at 3-DOF (Degree of freedom) motion in deep water and shallow water based on the in-port speed of 1.54 m/s. The CFD (Computational fluid dynamics) method was used as a specialized tool in naval hydrodynamics based on the RANS (Reynolds-averaged Navier-Stoke) solver for maneuvering prediction. A virtual captive model test in CFD with various constrained motions, such as static drift, circular motion, and combined circular motion with drift, was performed to determine the hydrodynamic forces and moments of the ship. In addition, a model test was performed in a square tank for a static drift test in deep water to verify the accuracy of the CFD method by comparing the hydrodynamic forces and moments. The results showed changes in hydrodynamic forces and moments in deep and shallow water, with the latter increasing dramatically in very shallow water. The velocity fields demonstrated an increasing change in velocity as water became shallower. The least-squares method was applied to obtain the hydrodynamic coefficients by distinguishing a linear and non-linear model of the hydrodynamic force models. The course stability, maneuverability, and collision avoidance ability were evaluated from the estimated hydrodynamic coefficients. The hydrodynamic characteristics showed that the course stability improved in extremely shallow water. The maneuverability was satisfied with IMO (2002) except for extremely shallow water, and collision avoidance ability was a good performance in deep and shallow water.

Prediction of Manoeuvrability of a Ship with Low Forward Speed in Shallow Water (천수 영역에서 저속 운항하는 선박의 조종성능 추정에 관한 연구)

  • Kim, Se-Won;Yeo, Dong-Jin;Rhee, Key-Pyo;Kim, Dong-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.3
    • /
    • pp.280-287
    • /
    • 2008
  • In this paper, a mathematical model for a ship manoeuvring with low forward speed in shallow water was suggested. Based on the cross flow model with low forward speed in deep sea, hull, propeller and rudder models were modified to consider the shallow water effects. Static drift and PMM tests were performed to obtain the cross flow drag coefficients and hydrodynamic coefficients. To validate suggested mathematical model, numerical simulation results were compared with those of sea-trials. Through comparisons, it was concluded that suggested mathematical model could give proper estimation on turning test results.

A study on the turning-motion of T/S SAEBADA in shallow water (실습선 새바다호의 천수역 선회운동에 관한 연구)

  • KIM, Su-Hyung;LEE, Chun-Ki
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.3
    • /
    • pp.273-283
    • /
    • 2019
  • The authors has predicted the maneuvering characteristics of a fishing vessel in deep water using Kijima's empirical formula in a previous study. Since the Kijima's empirical formula was developed by a regression analysis of merchant vessels which have dimensions ($C_b$, L/B, etc.) that are different from those of fishing vessels, it was possible to make a prediction approximately even with inaccurate estimation. In this study, the authors estimated the turning-motion characteristics of a model ship of fisheries training ship in shallow water based on the results of its previous study. The turning-motion characteristics of the model ship in shallow water was found out through quantitative analysis according to the water depth to ship draft ratio (H/d). In conclusion, the turning-motion characteristics of the model ship had significant changes immediately after an H/d 1.5, and this result will be helpful for sailing in shallow water.

TRAVELING WAVE SOLUTIONS FOR A SHALLOW WATER MODEL

  • Jung, Soyeun
    • Honam Mathematical Journal
    • /
    • v.39 no.4
    • /
    • pp.649-654
    • /
    • 2017
  • In this note, we seek traveling wave solutions of a shallow water model in a one dimensional space by a simple but rigorous calculation. From the profile equation of traveling wave solutions, we need to investigate the phase portrait of a one dimensional ordinary differential equation $\tilde{u}^{\prime}=F(\tilde{u})$ connecting two end states of the traveling wave solution.

Development and Application of Agricultural Reservoir Water Quality Simulation Model (ARSIM-rev) (농업용 저수지 수질모델 (ARSIM-rev) 개발 및 적용)

  • Haam, Jong Hwa;Kim, Dong Hwan;Kim, Hyung Joong;Kim, Mi-Ock
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.65-76
    • /
    • 2012
  • Agricultural reservoir water quality simulation model (ARSIM-rev) was developed in this study for water quality simulation of a small and shallow agricultural reservoir with limited observed water quality data. Developed ARSIM-rev is a zero-dimensional water quality model because of little spatial differences in water quality between stations in a small and shallow agricultural reservoir. ARSIM-rev used same water quality reaction equations with WASP except for several equations, and daily based input parameters such as settling rate, release rate from sediment, and light extinction coefficient changed yearly based input parameters in ARSIM-rev. A number of pre- and post-processors were developed such as auto calibration and scenario analysis for ARSIM-rev. CE-QUAL-W2, WASP, and developed ARSIM-rev were applied to Mansu agricultural reservoir to evaluate model performance, and ARSIM-rev demonstrated similar model performance with CE-QUAL-W2 and WASP when low number of observed data was used for agricultural reservoir water quality simulation. Overall, developed ARSIM-rev was feasible for water quality simulation in a small and shallow agricultural reservoir with limited observed water quality data, and it can simulate agricultural reservoir water quality precisely enough like common water quality model such as CE-QUAL-W2 and WASP within a limited time.

A TWO-DIMENSIONAL FINITE VOLUME MODEL IN NONORTHOGONAL COORDINATE SYSTEM

  • Kim, Chang-Wan;Lee, Bong-Hee;Cho, Yong-Sik;Yoon, Tae-Hoon
    • Water Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.151-160
    • /
    • 2001
  • A two-dimensional flow model is newly developed. Two-dimensional shallow-water equations are discretized by the finite volume method. A nonorthogonal coordinate system is then employed. The developed model is applied to simulations of flows in a 180 degree curved bend flow. Numerical prediction are compared to available laboratory measurement. A good agreement is observed.

  • PDF

On the Wave Load of Tanker Model in a Shallow Water (특수선(特殊船) 설계(設計)에 관한 연구(硏究) -유조선(油槽船)의 천수중(淺水中)에서의 파랑하중(波浪荷重)-)

  • Z.G.,Kim;J.H.,Hwang;H.,Kim;J.M.,Yoo
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.2
    • /
    • pp.17-20
    • /
    • 1980
  • The shearing forces and bending moments acting on the tanker model[1] of $C_B$ 0.82 in regular oblique waves of shallow water are investigated by numerical calculations. The new strip method was adopted. It is concluded that in the shallow water shearing forces and the bending moments acting on the tanker model are higher than those of deep water waves by the present numerical investigations. The wave bending moment at the midship section is roughly twice of deep water value in the shallow of H/T less than 2. in this calculation.

  • PDF

THE FORMAL LINEARIZATION METHOD TO MULTISOLITON SOLUTIONS FOR THREE MODEL EQUATIONS OF SHALLOW WATER WAVES

  • Taghizadeh, N.;Mirzazadeh, M.;Paghaleh, A. Samiei
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.381-391
    • /
    • 2012
  • In this paper, the formal linearization method is used to construct multisoliton solutions for three model of shallow water waves equations. The three models are completely integrable. The formal linearization method is an efficient method for obtaining exact multisoliton solutions of nonlinear partial differential equations. The method can be applied to nonintegrable equations as well as to integrable ones.