• 제목/요약/키워드: a robot manipulator

검색결과 967건 처리시간 0.027초

로봇 메니퓰레이터 제어를 위한 개조된 자기조직화 신경망 개발 (Development of the Revised Self-Organizing Neural Network for Robot Manipulator Control)

  • 구태훈;이종태
    • 대한산업공학회지
    • /
    • 제25권3호
    • /
    • pp.382-392
    • /
    • 1999
  • Industrial robots have increased in both the number and applications in today's material handling systems. However, traditional approaches to robot controling have had limited success in complicated environment, especially for real time applications. One of the main reasons for this is that most traditional methods use a set of kinematic equations to figure out the physical environment of the robot. In this paper, a neural network model to solve robot manipulator's inverse kinematics problem is suggested. It is composed of two Self-Organizing Feature Maps by which the workspace of robot environment and the joint space of robot manipulator is inter-linked to enable the learning of the inverse kinematic relationship between workspace and joint space. The proposed model has been simulated with two robot manipulators, one, consisting of 2 links in 2-dimensional workspace and the other, consisting of 3 links in 2-dimensional workspace, and the performance has been tested by accuracy of the manipulator's positioning and the response time.

  • PDF

극점 배치 자기 동조에 의한 로보트 매니퓰레이터 제어 (Pole placement self-tuning control of robot manipulators)

  • 이종용;양태규;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.32-35
    • /
    • 1987
  • An adaptive control scheme has been recognized as an effective approach for a robot manipulator to track a desired trajectory in spite of the presence of nonlinearties and parameter uncertainties in robot dynamic models. In this paper, an adaptive control scheme for a robot manipulator is proposed to design the self-tuning controller which combines the pole placement with the extended linearized perturbation model. And this control scheme has two components: a feadforward control and a feedback compensation control. Based on this, the controller is demonstrated by the simulation about position control of a three-link manipulator with payload and parameter uncertainty.

  • PDF

직접구동식 스카라 로봇의 개발 및 개인용 컴퓨터를 이용한 기초 힘/운동 제어 (Development of a Direct Drive Scara Robot Manipulator and PC-Based Preliminary Force/Motion Control)

  • Kim, D.H.;Park, D.Y.;Park, H.S.
    • 한국정밀공학회지
    • /
    • 제12권10호
    • /
    • pp.25-31
    • /
    • 1995
  • In this paper, a direct drive scalar robot manipulator is constructed and its mechanical machanism for operation is explained. Also, a motion controller board for the direct drive robot manipulator was developed where the IBM 486 computer is the main controller. For the developed direct drive robot, a force/motion control algorithm based on an active compliance scheme is developed. A preliminary experiment using the developed direct drive for a peg-in-hole job was done by implementing the control algorithm.

  • PDF

물체 잡기를 위한 비전 기반의 로봇 메뉴플레이터 (Vision-Based Robot Manipulator for Grasping Objects)

  • 백영민;안호석;최진영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.331-333
    • /
    • 2007
  • Robot manipulator is one of the important features in service robot area. Until now, there has been a lot of research on robot" manipulator that can imitate the functions of a human being by recognizing and grasping objects. In this paper, we present a robot arm based on the object recognition vision system. We have implemented closed-loop control that use the feedback from visual information, and used a sonar sensor to improve the accuracy. We have placed the web-camera on the top of the hand to recognize objects. We also present some vision-based manipulation issues and our system features.

  • PDF

Trajectory Tracking Control of a Real Redundant Manipulator of the SCARA Type

  • Urrea, Claudio;Kern, John
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권1호
    • /
    • pp.215-226
    • /
    • 2016
  • Modeling, control and implementation of a real redundant robot with five Degrees Freedom (DOF) of the SCARA (Selective Compliant Assembly Robot Arm) manipulator type is presented. Through geometric methods and structural and functional considerations, the inverse kinematics for redundant robot can be obtained. By means of a modification of the classical sliding mode control law through a hyperbolic function, we get a new algorithm which enables reducing the chattering effect of the real actuators, which together with the learning and adaptive controllers, is applied to the model and to the real robot. A simulation environment including the actuator dynamics is elaborated. A 5 DOF robot, a communication interface and a signal conditioning circuit are designed and implemented for feedback. Three control laws are executed in: a simulation structure (together with the dynamic model of the SCARA type redundant manipulator and the actuator dynamics) and a real redundant manipulator of the SCARA type carried out using MatLab/Simulink programming tools. The results, obtained through simulation and implementation, were represented by comparative curves and RMS indices of the joint errors, and they showed that the redundant manipulator, both in the simulation and the implementation, followed the test trajectory with less pronounced maximum errors using the adaptive controller than the other controllers, with more homogeneous motions of the manipulator.

적응모델추종제어기법에 의한 산업용 로봇 매니퓰레이터 제어기의 성능개선 및 시뮬레이션에 관한 연구 (A study on simulation and performance improvement of industrial robot manipulator controller using adaptive model following control method)

  • 허남수;한성현;이만형
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.463-477
    • /
    • 1991
  • This study proposed a new method to design a robot manipulator control system capable of tracking the trajectories of joint angles in a reasonable accuracy to cover with actual situation of varying payload, uncertain parameters, and time delay. The direct adaptive model following control method has been used to improve existing industrial robot manipulator control system design. The proposed robot manipulator controller is operated by adjusting its gains based on the response of the manipulator in such a way that the manipulator closely matches the reference model trajectories predefined by the designer. The manipulator control system studied has two loops: they are an inner loop on adaptive model following controller to compensate nonlinearity in the manipulator dynamic equation and to decouple the coupling terms and an outer loop of state feedback controller with integral action to guarantee the stability of the adaptive scheme. This adaptation algorithm is based on the hyperstability approach with an improved Lyapunov function. The coupling among joints and the nonlinearity in the dynamic equation are explicitly considered. The designed manipulator controller shows good tracking performance in various cases, load variation, parameter uncertainties. and time delay. Since the proposed adaptive control method requires only a small number of parameters to be estimated, the controller has a relatively simple structure compared to the other adaptive manipulator controllers. Therefore, the method used is expected to be well suited for a high performance robot controller under practical operation environments.

능동카메라기반 이동매니퓰레이터의 물체위치추정 및 최적동작계획 (Object Position Estimation and Optimal Moving Planning of Mobile Manipulator based on Active Camera)

  • 진태석;이장명
    • 전자공학회논문지SC
    • /
    • 제42권5호
    • /
    • pp.1-12
    • /
    • 2005
  • 이동로봇과 작업로봇의 직결연결 형태인 이동매니퓰레이터는 원자로 내부와 같은 위험한 작업환경에서 다양한 일한 처리하기위해 유용한 시스템이라 할 수 있다. 하부의 이동로봇은 non-holonomic 시스템이고 상부의 작업로봇의 결합으로 인하여 기구학적 잉여자유도를 갖고 있다. 그러나 주행 중 작업공간 확보로 인하여 고정식 매니퓰레이터보다 더 효율적인 작업이 가능 하다고 할 수 있다. 본 논문에서는 영상정보에 의한 물체인식 및 최적주행을 수행하기 위하여 이동로봇에 장착된 능동카메라에 인식된 영상과 실제 물체간의 기하학적 관계를 이용하여 직교좌표상의 물체의 위치를 추정할 수 있도록 하였다. 두 번째로 시스템의 위치변위 및 영상정보를 이용하여 물체위치를 추정하고 동차행렬을 이용하여 이동매니퓰레이터의 현 위치와 물체간의 최적경로를 결정하는 방법을 제시하였다. 제시한 방법을 시뮬레이션과 이동매니퓰레이터를 이용한 실험데이터분석을 통하여 유효성을 제시하였다.

폐체인 구조의 다관절 로봇 매니플레이터의 개발 (Development of Revolute joint Robot Manipulator with closed-chain structure)

  • 오정민;백창열;최형식;김명훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.540-543
    • /
    • 2002
  • Conventional robot manipulators actuated by motors with the speed reducer such as the harmonic drive have weakness in the load capacity, since the speed reducer does not have enough strength. To overcome this, we proposed and constructed a new type of the robot actuator which is four-bar-link mechanism driven by the ball screw. We developed a new type of a revolute-jointed robot manipulator composed of four axes. The base axis is actuated with conventional speed reducer, but the others are actuated by the proposed actuators. We analyzed the mechanism of the actuators of the robot joints, and developed the dynamics model. The dynamics are expressed in the joint coordinates, and then they are mapped into the sliding coordinates of the ball screw. The structure specifications of the manipulator shown.

  • PDF

FPGA-based ARX-Laguerre PIO fault diagnosis in robot manipulator

  • Piltan, Farzin;Kim, Jong-Myon
    • Advances in robotics research
    • /
    • 제2권1호
    • /
    • pp.99-112
    • /
    • 2018
  • The main contribution of this work is the design of a field programmable gate array (FPGA) based ARX-Laguerre proportional-integral observation (PIO) system for fault detection and identification (FDI) in a multi-input, multi-output (MIMO) nonlinear uncertain dynamical robot manipulators. An ARX-Laguerre method was used in this study to dynamic modeling the robot manipulator in the presence of uncertainty and disturbance. To address the challenges of robustness, fault detection, isolation, and estimation the proposed FPGA-based PI observer was applied to the ARX-Laguerre robot model. The effectiveness and accuracy of FPGA based ARX-Laguerre PIO was tested by first three degrees of the freedom PUMA robot manipulator, yielding 6.3%, 10.73%, and 4.23%, average performance improvement for three types of faults (e.g., actuator fault, sensor faults, and composite fault), respectively.

로봇 매니플레이터를 위한 신경회로망을 이용한 슬라이딩 모드 제어 (Sliding Mode Control using Neural Network for a Robot Manipulator)

  • 박양수;박윤명;최부귀
    • 융합신호처리학회논문지
    • /
    • 제2권2호
    • /
    • pp.89-94
    • /
    • 2001
  • 본 논문에서는 로봇 매니플레이터의 고속 동작시 위치 제어의 정확성을 감소시키는 다중 모드 오차 진동을 제거 할 수 있는 단순한 슬라이딩 모드 제어를 소개한다. 또한 시스템의 파라메터 변화와 외란으로 인해 슬라이딩 평면 조건의 깨짐을 방지하기 위해 신경망 학습 기능이 사용되어 진다. 그러므로 본 논문에서는 신경망을 이용한 슬라이딩 모드 제어시스템이 설계되고, 제안된 제어 시스템의 성능은 시뮬레이션 을 통해 증명된다.

  • PDF