• Title/Summary/Keyword: a research nuclear reactor

Search Result 1,440, Processing Time 0.029 seconds

Application of Economic Risk Measures for a Comparative Evaluation of Less and More Mature Nuclear Reactor Technologies

  • Andrianov, A.A.;Andrianova, O.N.;Kuptsov, I.S.;Svetlichny, L.I.;Utianskaya, T.V.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.431-439
    • /
    • 2018
  • Less mature nuclear reactor technologies are characterized by a greater uncertainty due to insufficient detailed design information, operational data, cost information, etc., but the expected performance characteristics of less mature options are usually more attractive in comparison with more mature ones. The greater uncertainty is, the higher economic risks associated with the project realization will be. Within a comparative evaluation of less and more mature nuclear reactor technologies, it is necessary to apply economic risk measures to balance judgments regarding the economic performance of less and more mature options. Assessments of any risk metrics involve calculating different characteristics of probability distributions of associated economic performance indicators and applying the Monte-Carlo method. This paper considers the applicability of statistical risk measures for different economic performance indicators within a trial case study on a comparative evaluation of less and more mature unspecified LWRs. The presented case study demonstrates the main trends associated with the incorporation of economic risk metrics into a comparative evaluation of less and more mature nuclear reactor technologies.

Research on non-uniform pressure pulsation of the diffuser in a nuclear reactor coolant pump

  • Zhou, Qiang;Li, Hongkun;Pei, Lin;Zhong, Zuowen
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.1020-1028
    • /
    • 2021
  • The nuclear reactor coolant pump transferring heat energy inherently brings with it the unsteady flow and inevitably threatens to the safe operation of the pump unit, especially with the pressure pulsation induced by the rotor-stator interaction. In this paper, the characteristics of pressure pulsation of the diffuser in a nuclear reactor coolant pump were investigated by the numerical simulation with experimental validation. Pressure pulsation signals measured synchronously from sensors mounted on the radial diffuser of a model pump were analyzed via Welch's method. Frequency components induced by the rotor-stator interaction can be revealed by the diameter mode analysis method. The pressure pulsation of the diffuser is dominated by the blade passing frequency and its harmonics, which are free from the effect of flow rate and rotational speed while the corresponding amplitudes are easily affected by different operational conditions and measuring positions. The non-uniformity is much more affected by the rotational speed than the flow rate. This research is helpful for further work to reduce the pressure pulsation for the reactor coolant pump.

Verification of a novel fuel burnup algorithm in the RAPID code system based on Serpent-2 simulation of the TRIGA Mark II research reactor

  • Anze Pungercic;Valerio Mascolino ;Alireza Haghighat;Luka Snoj
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3732-3753
    • /
    • 2023
  • The Real-time Analysis for Particle-transport and In-situ Detection (RAPID) Code System, developed based on the Multi-stage Response-function Transport (MRT) methodology, enables real-time simulation of nuclear systems such as reactor cores, spent nuclear fuel pools and casks, and sub-critical facilities. This paper presents the application of a novel fission matrix-based burnup methodology to the well-characterized JSI TRIGA Mark II research reactor. This methodology allows for calculation of nuclear fuel depletion by combination and interpolation of RAPID's burnup dependent fission matrix (FM) coefficients to take into account core changes due to burnup. The methodology is compared to experimentally validated Serpent-2 Monte Carlo depletion calculations. The results show that the burnup methodology for RAPID (bRAPID) implemented into RAPID is capable of accurately calculating the keff burnup changes of the reactor core as the average discrepancies throughout the whole burnup interval are 37 pcm. Furthermore, capability of accurately describing 3D fission source distribution changes with burnup is demonstrated by having less than 1% relative discrepancies compared to Serpent-2. Good agreement is observed for axially and pin-wise dependent fuel burnup and nuclear fuel nuclide composition as a function of burnup. It is demonstrated that bRAPID accurately describes burnup in areas with high gradients of neutron flux (e.g. vicinity of control rods). Observed discrepancies for some isotopes are explained by analyzing the neutron spectrum. This paper presents a powerful depletion calculation tool that is capable of characterization of spent nuclear fuel on the fly while the reactor is in operation.

Development of Disassembly Tool for Intermediate Examination of Nuclear Fuel Rods (핵연료봉 중간검사를 위한 장탈착 툴 개발)

  • Hong, Jintae;Heo, Sung-Ho;Kim, Ka-Hye;Park, Sung-Jae;Joung, Chang-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.443-449
    • /
    • 2014
  • To check the characteristics of nuclear fuels during an irradiation test, the nuclear fuel rod needs to be disassembled from the test rig located in the pool of the research reactor. Then, the disassembled fuel rod is delivered to the hot cell for intermediate examination. A fuel rod that passes the intermediate examination is delivered to the reactor pool to be reassembled into the test rig. The irradiation test is resumed with the reassembled test rig. Because nuclear fuel rods irradiated by neutrons are highly radioactive, all the disassembly and reassembly processes should be carried out in the pool of the research reactor to prevent operators being exposed to radiation. In particular, because a test rig is 5.4-m long and the reactor pool of HANARO is 6-m deep, special tools need to be developed for performing the disassembly and reassembly processes. In this study, a new assembly design of nuclear fuel rods for intermediate examination is introduced. Furthermore, tools for treating the irradiated fuel rod assembly are introduced, and their performance is verified by an out pile test.

Assessment of N-16 activity concentration in Bangladesh Atomic Energy Commission TRIGA Research Reactor

  • Ajijul Hoq, M.;Malek Soner, M.A.;Salam, M.A.;Khanom, Salma;Fahad, S.M.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.165-169
    • /
    • 2018
  • An assessment for determining N-16 activity concentrations during the operation condition of Bangladesh Atomic Energy Commission TRIGA Research Reactor was performed employing several governing equations. The radionuclide N-16 is a high energy (6.13 MeV) gamma emitter which is predominately created by the fast neutron interaction with O-16 present in the reactor core water. During reactor operation at different power level, the concentration of N-16 at the reactor bay region may increase causing radiation risk to the reactor operating personnel or the general public. Concerning the safety of the research reactor, the present study deals with the estimation of N-16 activity concentrations in the regions of reactor core, reactor tank, and reactor bay at different reactor power levels under natural convection cooling mode. The estimated N-16 activity concentration values with 500 kW reactor power at the reactor core region was $7.40{\times}10^5Bq/cm^3$ and at the bay region was $3.39{\times}10^5Bq/cm^3$. At 3 MW reactor power with active forced convection cooling mode, the N-16 activity concentration in the decay tank exit water was also determined, and the value was $4.14{\times}10^{-1}Bq/cm^3$.

SFR DEPLOYMENT STRATEGY FOR THE RE-USE OF SPENT FUEL IN KOREA

  • Kim, Young-In;Hong, Ser-Ghi;Hahn, Do-Hee
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.517-526
    • /
    • 2008
  • The widespread concern regarding the management of spent fuel that mainly contributes to nuclear waste has led to the development of the sodium-cooled fast reactor (SFR) as one of the most promising future types of reactors at both national and international levels. Various reactor deployment scenarios with SFR introductions with different conversion ratios in the existing PWR-dominant nuclear fleet have been assessed to optimize the SFR deployment strategy to replace PWRs with the view toward a reduction in the level of spent fuel as well as efficient uranium utilization through its reuse in a closed fuel cycle. An efficient reactor deployment strategy with the SFR introduction starting in 2040 has been drawn based on an SFR deployment strategy in which burners are deployed prior to breakeven reactors to reduce the amount of PWR spent fuel substantially at the early deployment stage. The PWR spent fuel disposal is reduced in this way by 98% and the cumulative uranium demand for PWRs to 2100 is projected to be 445 ktU, implying a uranium savings of 115 ktU. The SFR mix ratio in the nuclear fleet near the year 2100 is estimated to be approximately 35-40%. PWRs will remain as a main power reactor type until 2100 and SFRs will support waste minimization and fuel utilization.

MIT PEBBLE BED REACTOR PROJECT

  • Kadak, Andrew C.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.95-102
    • /
    • 2007
  • The conceptual design of the MIT modular pebble bed reactor is described. This reactor plant is a 250 Mwth, 120 Mwe indirect cycle plant that is designed to be deployed in the near term using demonstrated helium system components. The primary system is a conventional pebble bed reactor with a dynamic central column with an outlet temperature of 900 C providing helium to an intermediate helium to helium heat exchanger (IHX). The outlet of the IHX is input to a three shaft horizontal Brayton Cycle power conversion system. The design constraint used in sizing the plant is based on a factory modularity principle which allows the plant to be assembled 'Lego' style instead of constructed piece by piece. This principle employs space frames which contain the power conversion system that permits the Lego-like modules to be shipped by truck or train to sites. This paper also describes the research that has been conducted at MIT since 1998 on fuel modeling, silver leakage from coated fuel particles, dynamic simulation, MCNP reactor physics modeling and air ingress analysis.

A Simple Dynamic Model and Transient Simulation of the Nuclear Power Reactor on Microcomputers

  • Han, Gee-Yang;Park, Cheol
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.605-610
    • /
    • 1997
  • A simple dynamic model is developed for the transient simulation of the nuclear power reactor. The dynamic model includes the normalized neutron kinetics model with reactivity feedback effects and the core thermal-hydraulics model. The main objective of this paper demonstrates the capability of the developed dynamic model to simulate various important variables of interest for a nuclear power reactor transient. Some representative results of transient simulations show the expected trends in all cases, even though no available data for comparison. In this work transient simulations are performed on a microcomputer using the DESIRE/N96T continuous system simulation language which is applicable to nuclear power reactor transient analysis.

  • PDF

VIBRATION AND STRESS ANALYSIS OF A UGS ASSEMBLY FOR THE APR1400 RVI CVAP

  • Ko, Do-Young;Kim, Kyu-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.817-824
    • /
    • 2012
  • The most important component of a nuclear power plant is its nuclear reactor. Studies on the integrity of reactors have become an important part regarding the safety of a nuclear power plant. The US Nuclear Regulatory Commission Regulatory Guide (NRC RG) 1.20 presents a Comprehensive Vibration Assessment Program (CVAP) to be used to verify the structural integrity of the Reactor Vessel Internals (RVI) for flow-induced vibration prior to commercial operation. However, there are few published studies related to the RVI CVAP. We classified the Advanced Power Reactor 1400 (APR1400) RVI CVAP as a non-prototype category-2 reactor as part of an independent validation of its design. The aim of this paper is to present the results of structural response analyses of the Upper Guide Structure (UGS) assembly of the APR1400 reactor. These results show that the UGS and the Inner Barrel Assembly (IBA) meet the specified integrity levels of the design acceptance criteria. The vibration and stress analysis results in this paper will be used as basic information to select measurement locations of the vibration and stress for the APR1400 RVI CVAP.